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Summary
chemotools stands as a production-oriented versatile Python library, developed to provide
a unified platform for advancing chemometric model development. Integrating spectral
preprocessing methodologies with the scikit-learn API and the expansive Python machine
learning ecosystem, this library seeks to standardize and simplify the complex process of creating
and implementing robust chemometric and machine learning models of spectral data.

Statement of need
Spectroscopy comprises a group of several analytical techniques used to understand the
composition of materials using light. Traditionally, spectroscopic data is analyzed by a
discipline called chemometrics, a branch of machine learning specialized on extracting chemical
information from multivariate spectra. Over the last decades, chemometricians, have excelled
by developing advanced preprocessing methods designed to attenuate instrument and measuring
noise from the spectra, and to enhance the pure chemical information of the samples (Rinnan
et al., 2009), (Mishra et al., 2020).

Spectroscopic methods are very suited for a wide range of applications because they allow
analyzing the chemical properties of various samples in a fast and simple manner. For this reason,
their adoption as integral components of Process Analytical Technology (PAT) has witnessed
significant growth across industries, including chemical, biotech, food, and pharmaceuticals.
Despite this surge, a notable obstacle has been the absence of open-source standardized,
accessible toolkit for chemometric model development and deployment. chemotools, positioned
as a comprehensive solution, addresses this void by integrating chemometric methods into the
Python machine learning ecosystem. By implementing a variety of preprocessing and feature
selection tools with the scikit-learn API (Pedregosa et al., 2018), chemotools opens up the
entire scikit-learn toolbox to users, encompassing features such as:

• a rich collection of estimators for regression, classification, and clustering
• cross-validation and hyper-parameter optimization algorithms
• pipelining for efficient workflows
• and model persistence using standardized libraries such as joblib or pickle

This integration empowers users with a versatile array of tools for robust model development
and evaluation (Figure 1).

In addition to its foundational capabilities, chemotools not only enables users to preprocess
data and train models using scikit-learn but also streamlines the transition of these models
into a production setting. By enabling users with a well defined interface, chemotools facilitates
the reception of input data and delivery of predictions from the trained model. This can then be
containerized using Docker, providing an efficient means for the distribution and implementation
of the model in any Docker-compatible environment, facilitating the deployment of models to

Lopez. (2024). chemotools: A Python Package that Integrates Chemometrics and scikit-learn. Journal of Open Source Software, 9(100), 6802.
https://doi.org/10.21105/joss.06802.

1

https://orcid.org/0000-0003-2372-5082
https://doi.org/10.21105/joss.06802
https://github.com/openjournals/joss-reviews/issues/6802
https://github.com/paucablop/chemotools
https://doi.org/10.5281/zenodo.13118393
https://brianmcfee.net
https://orcid.org/0000-0001-6261-9747
https://github.com/vinayak2019
https://github.com/Kastakin
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06802


cloud environments. This adaptive capability not only enables organizations to scale model
usage but also allows them to monitor performance and promptly update or rollback the model
as necessary.

chemotools also introduces a practical innovation by providing a streamlined framework for
data augmentation of spectroscopic datasets through the scikit-learn API. This feature offers
users a straightforward and consistent method to enhance spectral datasets, by introducing
stochastic artifacts that represent real-world variations. By integrating data augmentation
into the chemometric workflow, chemotools provides users with an efficient tool for improving
their datasets to generalize the models and optimize their performance.

Figure 1: chemotools in the Python machine learning environment .

Features and functionality
chemotools implements a collection of scikit-learn transformers and selectors. Transformers
are divided in preprocessing and augmentation methods. Preprocessing functions range
from well-established chemometric methods such as the multiplicative scatter correction or
the standard normal variate (Rinnan et al., 2009), to more recent methods such as the
asymmetrically reweighted penalized least squares method to remove complex baselines (Baek
et al., 2015). Several preprocessing methods can be conveniently concatenated using scikit-

learn pipelines (Figure 2). An example of code used to create a preprocessing pipeline mixing
scikit-learn and chemotools methods is shown in below:

Figure 2: Overview of the pipelines. A: Preprocessing pipeline. B: Augmentation pipeline.
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from chemotools.baseline import ArPls

from chemotools.smooth import WhittakerSmooth

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

pipeline = make_pipeline(

WhittakerSmooth(),

ArPls(),

StandardScaler(with_std=False),

)

The data augmentation module contains transformers that introduce stochastic artifacts to
the spectral data to reflect real-world variability (e.g. instrument-to-instrument variations).
These include a variety of transformers ranging from adding noise to the spectra following a
given distribution, to shifts on the spectral peaks or changes on the intensity of the peaks.
Since the data augmentation functions are implemented as transformers, the user can leverage
the pipelining functions of scikit-learn to concatenate different augmentation methods in
pipelines to transform their data. An example of an augmentation pipeline is shown in Figure 2.
An example of code to create an augmentation pipeline is shown below:

from chemotools.augmentation import BaselineShift, IndexShift, NormalNoise

from sklearn.pipeline import make_pipeline

augmentation_pipeline = make_pipeline(

NormalNoise(scale=0.001),

BaselineShift(0.001),

IndexShift(3),

)

spectra_augmented = np.array(

[augmentation_pipeline.fit_transform(spectrum) for _ in range(5)]

)

Figure 3 shows five spectra augmented with the pipeline depicted in Figure 2 and the original
spectrum.

Figure 3: Spectral augmentation. Five augmented spectra (in magenta) are generated from an original
spectrum (in blue) using an augmentation pipeline.
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In addition to the transformers, chemotools also implements selectors. Selectors are mathe-
matical functions used to select the relevant features from the spectral dataset based on a
given criterion. Selectors are used to select the features that contain the chemical information
of the sample, making the models more robust and generalizable.

Beyond its mathematical features, chemotools goes a step further by providing real-world
spectral datasets (Cabaneros Lopez et al., 2021). Accompanied by guides demonstrating the
integration of scikit-learn and chemotools for training regression and classification models,
these datasets immerse learners in practical applications. This hands-on approach bridges
theoretical concepts and real-world implementation, nurturing a deeper understanding of
potential challenges in real-world scenarios.

The documentation page (https://paucablop.github.io/chemotools/) meticulously outlines all
available mathematical functions within chemotools. This comprehensive resource serves as a
guide for users exploring the extensive capabilities of the library.

Adoption and applications
The ultimate objective of developing chemometric and machine learning models is either
to gain insights about complex datasets or to train models that can be used in production
applications (Figure 4). From a research and development perspective, chemotools offers a
wide range of transformers and selectors that, combined with the rest of the Python machine
learning environment, enables researchers to investigate and understand their spectral datasets.
From an industrial point of view, chemotools allows users to streamline the deployment of
their trained models into production environments adhering to standard frameworks developed
by the machine learning community in Python (Figure 1).

Beyond its practical applications, chemotools has been utilized as an educational tool at
universities for both Master’s (MSc) and Doctoral (PhD) levels. Integrating chemotools into
academic curricula using Jupyter notebooks, offers students a valuable opportunity to gain
hands-on experience with real-world datasets, providing practical insights into the application
of sophisticated techniques for preprocessing and analyzing spectral data. The tool’s user
friendly interface, coupled with comprehensive documentation, has proven an enriching learning
experience for students pursuing education in fields relate to analytical chemistry, process
analytical technology, data science or chemometrics.

Figure 4: Applications of chemotools.
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