
AutoEncoderToolkit.jl: A Julia package for training
(Variational) Autoencoders

Manuel Razo-Mejia 1¶

1 Department of Biology, Stanford University, CA, United States of America ¶ Corresponding author
DOI: 10.21105/joss.06794

Software
• Review
• Repository
• Archive

Editor: Fabian Scheipl
Reviewers:

• @sandeshkatakam
• @avik-pal

Submitted: 10 May 2024
Published: 30 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
With the advent of generative models, the field of unsupervised learning has exploded in the
last decade. One of the most popular generative models is the variational autoencoder (VAE)
(Kingma & Welling, 2014). VAEs assume the existence of a joint probability distribution
between a high-dimensional data space and a lower-dimensional latent space. Using a variational
inference approach, the VAE parametrizes this joint distribution with two neural networks–an
encoder and a decoder. This approach allows the model to approximate the underlying low-
dimensional structure that generated the observed data and generate new samples by sampling
from the learned latent space. Several variations of the original VAE have been proposed to
extend its capabilities and tackle different problems. Here, we present AutoEncoderToolkit.jl,
a Julia package for training VAEs and its extensions. The package is built on top of the
Flux.jl deep learning library (Innes, 2018) and provides a simple and flexible interface for
training different flavors of VAEs. Furthermore, the package offers a set of utilities for the
geometric analysis of the learned latent space.

Statement of need
Collecting and analyzing large high-dimensional datasets have become routine in several
scientific fields. Therefore, the need to understand and uncover the underlying low-dimensional
structure of these datasets has become more pressing than ever. VAEs have shown great
promise in this regard, with applications ranging from single-cell transcriptomics (Lopez et
al., 2018) to protein design (Lian et al., 2022) to the discovery of the governing equations
of dynamical systems (Champion et al., 2019). However, most of these tools have been
exclusively developed for the Python ecosystem. Julia is a promising high-performance
language for scientific computing, with a growing ecosystem for deep learning, state-of-the-art
automatic differentiation, and a strong GPU-accelerated computing backend. Furthermore,
the programming paradigm of Julia, based on multiple dispatch, allows for a more flexible,
modular, and composable codebase. AutoEncoderToolkit.jl aims to provide a simple and
flexible interface for training VAEs and their extensions in Julia, taking full advantage of the
language programming paradigm.

Software Description

Encoder & Decoder definition
AutoEncoderToolkit.jl takes a probability-theory-based approach to the package design.
Taking advantage of the multiple dispatch paradigm of Julia, the package can easily combine
and extend the encoders and decoders to quickly prototype different VAE architectures. In
other words, independent of the design of the multi-layer perceptron used for either the encoder

Razo-Mejia. (2024). AutoEncoderToolkit.jl: A Julia package for training (Variational) Autoencoders. Journal of Open Source Software, 9(99),
6794. https://doi.org/10.21105/joss.06794.

1

https://orcid.org/0000-0002-9510-0527
https://doi.org/10.21105/joss.06794
https://github.com/openjournals/joss-reviews/issues/6794
https://github.com/mrazomej/AutoEncoderToolkit.jl
https://doi.org/10.5281/zenodo.12802504
https://orcid.org/0000-0001-8172-3603
https://github.com/sandeshkatakam
https://github.com/avik-pal
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06794

or the decoder, what defines their behavior is their associated probability distribution. For
example, let us consider the loss function for the standard VAE model, given by the evidence
lower bound (ELBO):

ELBO = ⟨log 𝑝𝜃(𝑥|𝑧)⟩𝑞𝜙(𝑧|𝑥) −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)), (1)

where 𝑝𝜃(𝑥|𝑧)–defined by the decoder with parameters 𝜃–is the likelihood of the data given the
latent variable, 𝑞𝜙(𝑧|𝑥)–defined by the encoder with parameters 𝜙–is the posterior distribution
of the latent variable given the data, 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝(𝑧)) is the Kullback-Leibler divergence
between the posterior and the prior distribution of the latent space, and ⟨⋅⟩𝑞𝜙(𝑧|𝑥) is the expected
value over the posterior distribution. By defining the decoder type as either BernoulliDecoder
or SimpleGaussianDecoder, the user can decide whether the decoder parametrizes a likelihood
function 𝑝𝜃(𝑥|𝑧) as a Bernoulli distribution or a Gaussian distribution with constant diagonal
covariance, respectively. This design choice allows for the quick prototyping of different
architectures without the overhead of defining new specific losses for each type of decoder.

Furthermore, the design allows for the easy extension of the available encoders and decoders
that can directly integrate into any available VAE model. For example, let us assume that for
a particular problem, the user wants to define a decoder whose outputs are the parameters for
independent Poisson distributions, each with a different parameter 𝜆𝑖. In other words, on the
decoder side, the decoder returns a vector of parameters 𝜆 for each of the dimensions of the
data. The user can define a new decoder type

struct PoissonDecoder <: AbstractVariationalDecoder

decoder::Flux.Chain

end # struct

With this struct defined, the user only needs to define two methods: one for the forward pass
of the decoder

function (decoder::PoissonDecoder)(z::AbstractArray)

Forward pass through decoder

return (λ=decoder.decoder(z),)

end # function

and another for the likelihood of the data given the latent variable

function decoder_loglikelihood(

x::AbstractArray,

z::AbstractVector,

decoder::PoissonDecoder,

decoder_output::NamedTuple;

)

Extract the lambda parameter of the Poisson distribution

λ = decoder_output.λ

Compute log-likelihood

loglikelihood = sum(x .* log.(λ) - λ - loggamma.(x .+ 1))

return loglikelihood

end # function

where we use the log-likelihood function of multiple independent Poisson distributions, given
by

ln 𝑝(𝑥|𝜆) = ∑
𝑖

𝑥𝑖 log(𝜆𝑖) − 𝜆𝑖 − log(Γ(𝑥𝑖 + 1)). (2)

With these methods defined, the PoissonDecoder can be directly integrated into any of the
different VAE models provided by the package.

Razo-Mejia. (2024). AutoEncoderToolkit.jl: A Julia package for training (Variational) Autoencoders. Journal of Open Source Software, 9(99),
6794. https://doi.org/10.21105/joss.06794.

2

https://doi.org/10.21105/joss.06794

Implemented models
At the time of this writing, the package has implemented the following models:

Table 1: List of implemented (variational) autoencoder models

Name Reference
Deterministic Autoencoder
Vanilla Variational Autoencoder (VAE) (Kingma &

Welling, 2014)
𝛽-Variational Autoencoder (𝛽-VAE) (Higgins et al.,

2017)
Maximum-Mean Discrepancy Variational Autoencoder (InfoVAE) (Zhao et al.,

2018)
InfoMax Variational Autoencoder (InfoMaxVAE) (Rezaabad &

Vishwanath, 2020)
Hamiltonian Variational Autoencoder (HVAE) (Caterini et al.,

2018)
Riemannian Hamiltonian Variational Autoencoder (RHVAE) (Chadebec et al.,

2020)

Other than the deterministic autoencoder, all the models listed above use the same underlying
VAE struct as part of their definition. Some of them, like the InfoMaxVAE and RHVAE require
additional neural networks for training or inference. However, other than those additional
elements, the training routines for all models are virtually the same. This design choice allows
users to quickly explore different VAE models for their specific applications without writing
new training routines for each model.

Moreover, extending the list of VAE models is also straightforward as contributions to the
package only need to focus on a general definition of the loss function associated with the new
VAE model without the need to define specific terms for each type of encoder or decoder.

Differential geometry utilities
In recent years, there has been a growing interest in understanding the geometric properties of
the latent space learned by VAEs (Arvanitidis et al., 2021; Chadebec & Allassonnière, 2022).
This is because the non-linearities of the encoder and decoder networks can induce complex
geometries in the latent space, where the Euclidean distance between points in the latent space
does not necessarily reflect the true distance between the corresponding data points. Thus,
tools from differential geometry such as geodesic distance, parallel transport, and curvature can
provide deeper insights into the structure of the learned latent space. AutoEncoderToolkit.jl
provides a set of utilities for the geometric analysis of the latent space. For example, at the
time of this writing, the NeuralGeodedics module provides the tools to approximate geodesic
curves between points in latent space for the Riemannian Hamiltonian VAE (RHVAE) model.
This is achieved by utilizing a neural network to approximate the geodesic equation (Chen
et al., 2018) in the latent space using the explicit representation of the Riemannian metric
learned by the RHVAE model (Chadebec et al., 2020).

GPU support
AutoEncoderToolkit.jl offers GPU support for CUDA.jl compatible GPUs out of the box.

Documentation
Documentation is available at (https://mrazomej.github.io/AutoEncoderToolkit.jl), where
there are worked-out examples and tutorials on how to use the package.

Razo-Mejia. (2024). AutoEncoderToolkit.jl: A Julia package for training (Variational) Autoencoders. Journal of Open Source Software, 9(99),
6794. https://doi.org/10.21105/joss.06794.

3

https://doi.org/10.21105/joss.06794

Acknowledgements
I would like to thank Griffin Chure, Madhav Mani, and Dmitri Petrov for their advice and
helpful discussions during the development of this package. I also want to thank the Schmidt
Science Fellows program for funding part of this work via a postdoctoral fellowship. I would
also like to thank the reviewers of this manuscript for their helpful comments and suggestions.
The journal’s transparent peer review process has dramatically improved the quality of this
work.

References
Arvanitidis, G., Hansen, L. K., & Hauberg, S. (2021, December 13). Latent Space Oddity: On

the Curvature of Deep Generative Models. https://doi.org/10.48550/arXiv.1710.11379

Caterini, A. L., Doucet, A., & Sejdinovic, D. (2018). Hamiltonian Variational Auto-Encoder.
11. https://doi.org/10.48550/arXiv.1805.11328

Chadebec, C., & Allassonnière, S. (2022, November 3). A Geometric Perspective on Variational
Autoencoders. https://doi.org/10.48550/arXiv.2209.07370

Chadebec, C., Mantoux, C., & Allassonnière, S. (2020, October 22). Geometry-Aware
Hamiltonian Variational Auto-Encoder. https://doi.org/10.48550/arXiv.2010.11518

Champion, K., Lusch, B., Kutz, J. N., & Brunton, S. L. (2019). Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences,
116(45), 22445–22451. https://doi.org/10.1073/pnas.1906995116

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., & Smagt, P. (2018). Metrics for Deep
Generative Models. Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, 1540–1550. https://proceedings.mlr.press/v84/chen18e.html

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., &
Lerchner, A. (2017). Β-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework. https://openreview.net/forum?id=Sy2fzU9gl

Innes, M. (2018). Flux: Elegant machine learning with Julia. Journal of Open Source Software,
3(25), 602. https://doi.org/10.21105/joss.00602

Kingma, D. P., & Welling, M. (2014, May 1). Auto-Encoding Variational Bayes. https:
//doi.org/10.48550/arXiv.1312.6114

Lian, X., Praljak, N., Subramanian, S. K., Wasinger, S., Ranganathan, R., & Ferguson, A. L.
(2022). Deep learning-enabled design of synthetic orthologs of a signaling protein [Preprint].
Molecular Biology. https://doi.org/10.1101/2022.12.21.521443

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., & Yosef, N. (2018). Deep generative
modeling for single-cell transcriptomics. Nature Methods, 15(12), 1053–1058. https:
//doi.org/10.1038/s41592-018-0229-2

Rezaabad, A. L., & Vishwanath, S. (2020, January 7). Learning Representations by Maximizing
Mutual Information in Variational Autoencoders. https://doi.org/10.48550/arXiv.1912.
13361

Zhao, S., Song, J., & Ermon, S. (2018, May 30). InfoVAE: Information Maximizing Variational
Autoencoders. https://doi.org/10.48550/arXiv.1706.02262

Razo-Mejia. (2024). AutoEncoderToolkit.jl: A Julia package for training (Variational) Autoencoders. Journal of Open Source Software, 9(99),
6794. https://doi.org/10.21105/joss.06794.

4

https://doi.org/10.48550/arXiv.1710.11379
https://doi.org/10.48550/arXiv.1805.11328
https://doi.org/10.48550/arXiv.2209.07370
https://doi.org/10.48550/arXiv.2010.11518
https://doi.org/10.1073/pnas.1906995116
https://proceedings.mlr.press/v84/chen18e.html
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.21105/joss.00602
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1101/2022.12.21.521443
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.48550/arXiv.1912.13361
https://doi.org/10.48550/arXiv.1912.13361
https://doi.org/10.48550/arXiv.1706.02262
https://doi.org/10.21105/joss.06794

	Summary
	Statement of need
	Software Description
	Encoder & Decoder definition
	Implemented models
	Differential geometry utilities
	GPU support
	Documentation

	Acknowledgements
	References

