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Summary
We introduce DeepBench, a Python library that employs mechanistic models (i.e., analytic
mathematical models) to simulate data that represent physics-related objects and systems:
geometric shapes (e.g., polygon), physics objects (e.g., pendulum), and astronomical objects
(e.g., elliptical galaxy). These data take the form of images (two-dimensional) or time series
(one-dimensional). In contrast to natural image benchmarks and complex physics simulations,
these data have simple, direct, numerical, and traceable connections between the input data
and the label data. When seeking a quantifiable interpretation, this kind of data is uniquely
suitable for developing, calibrating, testing, and benchmarking statistical and machine learning
models. Finally, this software package includes methods to curate and store these datasets to
maximize reproducibility.

Statement of Need
There are multiple open problems and issues that are critical for the machine learning and
scientific communities to address; principally: interpretability, explainability, uncertainty quan-
tification, and inductive bias in machine learning models when they are applied to scientific
data. Multiple kinds of datasets and data simulation software packages can be used for
developing models and confronting these challenges. These datasets range from natural images
and text to multi-dimensional data of physical processes. Indeed, multiple benchmark data
and simulation software packages have been created for developing and comparing models.

However, these benchmarks are typically limited in significant ways. Natural image datasets
comprising images from the real or natural world (e.g., vehicles, animals, landscapes) are
widely used in the development of machine learning models. These kinds of datasets tend to
be large, diverse, and carefully curated. However, they are not underpinned by or constructed
upon physical principles: they cannot be generated by mathematical expressions of formal
physical theory, so there is not a robust connection between the data and a quantitative theory.
Therefore, these datasets have a severely limited capacity to help address many questions in
machine learning models, such as uncertainty quantification.

On the other hand, complex physics simulations (e.g., cosmological N-body simulations and
particle physics simulators) are accurate, detailed, and based on precise quantitative theories
and models. This facilitates studies of interpretability and uncertainty quantification because
there is the possibility of linking the simulated data to the input choices through each layer
of calculation in the simulator. However, they are relatively small in size and number, and
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they are computationally expensive to reproduce. In addition, while they are underpinned by
specific physical functions, the complexity of the calculations makes them challenging as a
venue through which to make connections between machine learning results and input choices.
Complex physics simulations have one or more layers of mechanistic models. Mechanistic
models are defined with analytic functions and equations that describe and express components
of a given physical process: these are based on theory and empirical observations. In both of
these scenarios, it is difficult to build interpretable models that connect raw data and labels,
and it is difficult to generate new data rapidly.

The physical sciences community lacks sufficient datasets and software packages as benchmarks
for the development of statistical and machine learning models. In particular, there currently
does not exist simulation software packages that generates data underpinned by physical
principles and that satisfies the following criteria:

• multi-domain
• multi-purpose
• fast
• reproducible
• extensible
• based on mechanistic models
• include detailed noise prescriptions.

Related Work
There are many benchmarks—both datasets and simulation software packages—widely used
for model building in machine learning, statistics, and the physical sciences. First, benchmark
datasets of natural images include MNIST (Deng, 2012), CIFAR-10 (Krizhevsky, 2009), and
ImageNet (Russakovsky et al., 2014). Second, there are several large astronomical observation
datasets, such as the CfA Redshift Survey (Huchra et al., 1983), Sloan Digital Sky Survey
(York et al., 2000), and Dark Energy Survey (Abbott et al., 2018). Third, many N-body
cosmology simulation datasets serve as benchmarks, such as the Millennium (Springel, 2005),
Illustris (Vogelsberger et al., 2014), EAGLE (Schaye et al., 2015), Coyote (Heitmann et al.,
2010), Bolshoi (Klypin et al., 2011), CAMELS (Villaescusa-Navarro et al., 2021), and Quijote
(Villaescusa-Navarro et al., 2020) projects. Fourth, there have been multiple astronomy dataset
challenges that can be considered benchmarks for analysis comparison: e.g., PLAsTiCC (Hložek
et al., 2023), The Great08 Challenge (Bridle et al., 2009), and the Strong Gravitational Lens
Challenge (Metcalf et al., 2019). Fifth, there are multiple software packages that generate
simulated data for astronomy and cosmology, such as Astropy (The Astropy Collaboration et al.,
2013), GalSim (Rowe et al., 2015), lenstronomy (Birrer & Amara, 2018), deeplenstronomy
(Morgan et al., 2021), CAMB (Lewis et al., 2000), pixell (Naess et al., 2021), and SOXS
(ZuHone et al., 2023). Finally, particle physics projects use standard codebases for simulations,
such as Geant4 (Pia et al., 2009), GENIE (Andreopoulos et al., 2015), and PYTHIA (Sjöstrand,
2020). These simulations span wide ranges in speed, code complexity, physical fidelity, and
detail. Unfortunately, these datasets and software packages lack a combination of critical
features, including mechanistic models, speed, and reproducibility, which are needed for more
fundamental studies of statistical and machine learning models. The work in this paper is
most closely related to SHAPES (Wu et al., 2016) because that work also uses collections of
geometric objects with varying levels of complexity as a benchmark.

DeepBench Software
The DeepBench software package simulates data for analysis tasks that require precise numerical
calculations. First, the simulation models are fundamentally mechanistic: they are based on
relatively simple analytic mathematical expressions, which are physically meaningful. This
means that for each model, the number of input parameters that determine a simulation
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output is small (<10 for most models). These elements make the software package fast and
the outputs interpretable: they are conceptually and mathematically relatable to the inputs.
Second, DeepBench also includes methods to precisely prescribe noise for inputs, which are
propagated to outputs. This permits studies and the development of statistical inference models
that require uncertainty quantification, which is a significant challenge in modern machine
learning research. Third, the software framework includes features that permit a high degree of
reproducibility: e.g., random seeds at every key stage of input, a unique identification tag for
each simulation run, and the tracking and storage of metadata (including input parameters)
and the related outputs. Fourth, the primary user interface is a YAML configuration file, which
allows the user to specify every aspect of the simulation: e.g., types of objects, numbers of
objects, noise type, and number of classes. This feature—which is especially useful when
building and studying complex models like deep learning neural networks—permits the user
to incrementally decrease or increase the complexity of the simulation with a high level of
granularity.

DeepBench has the following features:

• Exact reproducibility
• Noise and error propagation
• Mechanistic modeling
• Physical sciences-based modeling
• Computational efficiency
• Simulations relevant to multiple domains
• Outputs of varying dimensions
• Readily extensible to new physics and outputs

Primary Modules
• Geometry objects: two-dimensional images generated with matplotlib (Hunter, 2007).

The shapes include 𝑁-sided polygons, arcs, straight lines, and ellipses. They are solid,
filled or unfilled two-dimensional shapes with edges of variable thickness.

• Physics objects: one-dimensional profiles for two types of implementations of pendulum
dynamics: one using Newtonian physics, the other using Hamiltonian.

• Astronomy objects: two-dimensional images generated based on radial profiles of typical
astronomical objects. The star object is created using the Moffat distribution provided
by the AstroPy (The Astropy Collaboration et al., 2013) library. The spiral galaxy object
is created with the function used to produce a logarithmic spiral (Ringermacher & Mead,
2009). The elliptical Galaxy object is created using the Sérsic profile provided by the
AstroPy library. Two-dimensional models are representations of astronomical objects
commonly found in data sets used for galaxy morphology classification.

• Image: two-dimensional images that are combinations and/or concatenations of Geometry
or Astronomy objects. The combined images are within matplotlib meshgrid objects.
Sky images are composed of any combination of Astronomy objects, while geometric
images comprise individual geometric shape objects.

• Collection: Provides a framework for producing module images or objects at once and
storing all parameters that were included in their generation, including exact noise levels,
object hyper-parameters, and non-specified defaults.

All objects also come with the option to add noise to each object. For physics objects—i.e.,
the pendulum—the user may add Gaussian noise to parameters: initial angle 𝜃0, the pendulum
length 𝐿, the gravitational acceleration 𝑔, the planet properties Φ = (𝑀/𝑟2), and Newton’s
gravity constant 𝐺. Note that 𝑔 = 𝐺 ∗ Φ = 𝐺 ∗𝑀/𝑟2: all parameters in this relationship
can receive noise. For astronomy and geometry Objects, which are images, the user can add
Poisson or Gaussian noise to the output images. Finally, the user can regenerate the same
noise using the saved random seed.
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Example Outputs

Figure 1: Example outputs of DeepBench, containing geometric and astronomy objects. Variants include
a single object, a noisy single object, two objects, and two noisy objects. The geometric outputs are
produced with filled ellipses and outlined rectangles, with a gaussian noise overlay for the noisy variants.
The astronomy outputs feature a star and an elliptical galaxy profile with similarly applied noise.

Figure 2: Example physics simulations from DeepBench. Pendulums show noisy and noiseless variants
of the Newtonian (left) and Hamiltonian (right) mathematical simulations. Both use initial conditions of
an arm length of 10 meters and a starting angle of 𝜋/4. The noisy variants introduce uncertainty to
these input parameters, along with the measurement of acceleration due to gravity.
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