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Summary
Many areas of science exhibit physical processes that are described by high dimensional partial
differential equations (PDEs), e.g., the 4D (Dorf et al., 2013), 5D (Candy et al., 2009) and 6D
models (Juno et al., 2018) describing magnetized fusion plasmas, models describing quantum
chemistry, or derivatives pricing (Bandrauk et al., 2007). Such problems are affected by the
so-called “curse of dimensionality” where the number of degrees of freedom (or unknowns)
required to be solved for scales as 𝑁𝐷 where 𝑁 is the number of grid points in any given
dimension 𝐷. A simple, albeit naive, 6D example is demonstrated in the left panel of Figure
1. With 𝑁 = 1000 grid points in each dimension, the memory required just to store the
solution vector, not to mention forming the matrix required to advance such a system in time,
would exceed an exabyte - and also the available memory on the largest of supercomputers
available today. The right panel of Figure 1 demonstrates potential savings for a range
of problem dimensionalities and grid resolution. While there are methods to simulate such
high-dimensional systems, they are mostly based on Monte-Carlo methods (E et al., 2021),
which rely on a statistical sampling such that the resulting solutions include noise. Since the
noise in such methods can only be reduced at a rate proportional to √𝑁𝑝 where 𝑁𝑝 is the
number of Monte-Carlo samples, there is a need for continuum, or grid/mesh-based methods
for high-dimensional problems, which both do not suffer from noise and bypass the curse of
dimensionality. We present a simulation framework that provides such a method using adaptive
sparse grids (Pflüger et al., 2010).

The Adaptive Sparse Grid Discretization (ASGarD) code is a framework specifically targeted at
solving high-dimensional PDEs using a combination of a Discontinuous-Galerkin Finite Element
solver implemented atop an adaptive sparse grid basis. The adaptivity aspect allows for the
sparsity of the basis to be adapted to the properties of the problem of interest, which facilitates
retaining the advantages of sparse grids in cases where the standard sparse grid selection rule
is not the best match. A prototype of the non-adaptive sparse-grid implementation was used
to produce the results of D’Azevedo et al. (2020) for 3D time-domain Maxwell’s equations.
ASGarD’s functionality was recently extended to solve the Vlasov–Poisson–Lenard–Bernstein
Model at lower computational cost (Schnake et al., 2024). The implementation utilizes both
CPU and GPU resources, as well as being single- and multi-node capable. Performance
portability is achieved by casting the computational kernels as linear algebra operations and
relying on vendor-provided BLAS libraries. Several test problems are provided, including
advection up to 6D with either explicit or implicit timestepping.
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Figure 1: (left) Illustration of the curse of dimensionality in the context of solving a 4 or 6 dimensional PDE
(e.g., those at the heart of magnetically confined fusion plasma physics) on modern supercomputers, and
how the memory required to store the solution vector for both naive and Sparse Grid based discretizations
as the resolution of the simulation domain is varied.; (right) Potential memory savings of a Sparse Grid
based solver represented as the ratio of the naive tensor product full-grid (FG) degrees of freedom (DoF)
to the sparse-grid (SG) DoF.

Statement of Need
The goal of ASGarD is to facilitate and promote the use of adaptive sparse-grid methods
by domain scientists for the approximation of kinetic models. ASGarD provides a robust yet
flexible adaptive sparse-grid library for solving PDEs where the “curse-of-dimensionality” and
computational complexity previously restricted domain scientists to Monte-Carlo sampling
simulation.

State of the Field
While GitHub Topics reports 65 public repositories for the discontinuous-Galerkin method
and 13 for sparse-grids, only two combine these two techniques. GalerkinSparseGrids.jl is
written in Julia and missing adaptivity, distributed- and shared-memory parallelism or GPU
accelerator support (Atanasov & Schnetter, 2017). AdaM-DG is written in C++ and lacks
distributed-memory parallelism or GPU accelerator support (Huang et al., 2024).
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