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Summary
Theorem proving software is one of the core tools in formal verification, model checking, and
synthesis. Modern provers solve satisfiability modulo theories (SMT) problems encompassing
propositional logic, integer and real arithmetic, floating-point arithmetic, strings, and data
structures such as bit vectors (De Moura & Bjørner, 2011). Additionally, new theories and
heuristics are continually being developed, increasing the practical utility of SMT (Bjørner et
al., 2023; Saouli et al., 2023).

This paper introduces Satisfiability.jl, a package providing a high-level representation for
SMT formulae including propositional logic, integer and real-valued arithmetic, and bit vectors
in Julia (Bezanson et al., 2017). Satisfiability.jl is the first published package for SMT
solving in idiomatic Julia, taking advantage of language features such as multiple dispatch and
metaprogramming to simplify the process of specifying and solving an SMT problem.

The SMT-LIB specification language
SMT-LIB is a low-level specification language designed to standardize interactions with
theorem provers1. (To disambiguate between the SMT (satisfiability modulo theories) and
this specification language, we always refer to the language as SMT-LIB.) There are both
in-depth treatments of computational logic and associated decision procedures (Bradley &
Manna, 2007; Kroening & Strichman, 2016) and shorter overviews of SMT (De Moura &
Bjørner, 2011).

SMT-LIB uses a Lisp-like syntax designed to simplify input parsing, providing an interactive
interface for theorem proving similar to Julia’s REPL. The language supports declaring variables,
defining functions, making assertions (requiring that a Boolean predicate be true), and issuing
solver commands. However, a limitation of SMT-LIB is that many commands are only valid
in specific solver modes. The command (get-model), for example, retrieves the satisfying
assignment for a predicate and is only valid in sat mode, while (get-unsat-core) is only
valid in unsat mode. Issuing a command in the wrong mode yields an error, thus many useful
sequences of SMT-LIB commands cannot be scripted in advance.

For a full description of SMT-LIB, readers are referred to the standard (Barrett et al., 2017).
Because our software provides an abstraction on top of SMT-LIB (thus offering compatibility
with different SMT solver backends), we refrain from an in-depth description of the language.
Knowledge of SMT-LIB is not required to use Satisfiability.jl.

1The current SMT-LIB standard is V2.6; we used this version of the language specification when implementing
our software.
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Statement of need
Many theorem provers have been developed over the years. Some notable provers include Z3
(Moura & Bjørner, 2008), PicoSAT (Biere, 2008), and CVC5 (Barbosa et al., 2022), all of
which expose APIs in popular languages including C++ and Python. However, provers are
low-level tools intended to be integrated into other software, necessitating the development of
higher-level software to improve usability. Such packages been published for other common
languages: PySMT uses both solver-specific APIs and the SMT-LIB language to interact with
a variety of solvers (Gario & Micheli, 2015). JavaSMT and ScalaSMT are similar (Baier et
al., 2021; Cassez & Sloane, 2017). In C++, the SMT-Switch library exposes many of the
underlying SMT-LIB commands (Mann et al., 2021).

By comparison, SMT solving in Julia has historically required the use of wrapped C++ APIs
to access specific solvers. Z3 and PicoSAT, among others, provide Julia APIs through this
method, allowing access to some or all functionality at a lower level of abstraction (Bolewski
et al., 2020). However, wrapped APIs often provide interfaces that do not match the idioms
or best practices of a specific language. Thus a native Julia front-end for SMT solving has the
potential to greatly improve the accessibility of formal verification in Julia. Satisfiability.jl

is the first such tool to be published in the Julia ecosystem. It facilitates the construction of
SMT formulae and the automatic generation of SMT-LIB statements, as well as programmatic
interaction with SMT-LIB compliant theorem provers.

Functionality
Satisfiability.jl uses multiple dispatch to optimize and simplify operations over constants, the
type system to enforce the correctness of SMT expressions, and Julia’s system libraries to
interact with SMT-LIB compliant solvers.

• Variables are defined using macros, similarly to JuMP.jl (Lubin et al., 2023). Expressions
are constructed from variables and SMT-LIB operators. Where applicable, we define
the appropriate mathematical operator symbols using Julia’s operator precedence rules
and Unicode support. We also use the built-in array functionality to broadcast operators
across arrays of expressions, a feature that is not available in the underlying SMT-LIB
language.

• Constants are automatically wrapped. Julia’s native Bool, Int, and Float64 types
interoperate with our BoolExpr, IntExpr and RealExpr types following type promotion
rules. Numeric constants are simplified and promoted; for example, true + 2 is stored
as integer 3 and 1 + 2.5 is promoted to 3.5. Logical expressions involving constants
are simplified using multiple dispatch to handle special cases.

• We use Julia’s type system to prevent expressions with incompatible types from being
constructed and to automatically convert compatible types following Z3’s promotion
rules. For example, adding a Boolean z and integer a yields the expression ite(z, 1,

0) + a (where ite is the if-then-else operator).

• An uninterpreted function is a function where the input-output mapping is not known.
When uninterpreted functions appear in SMT formulae, the task of the solver is to con-
struct a representation of the function using operators in the appropriate theories, or to
determine that no function exists (the formula is unsatisfiable). Satisfiability.jl im-
plements uninterpreted functions using Julia’s metaprogramming capabilities to generate
correctly typed functions returning either SMT expressions or (if a satisfying assignment
is known), the correct value when evaluating a constant.
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Interacting with solvers
Internally, our package launches a solver as an external process and interacts with it via input
and output pipes. This supports the interactive nature of SMT-LIB, which necessitates a two-
way connection with the solver, and provides several benefits. By transparently documenting
how our software manages sessions with solvers, we eliminate many of the difficulties that
arise when calling software dependencies. We also unify the process of installing solvers
for Satisfiability.jl across operating systems; the user simply ensures the solver can be
invoked from their machine’s command line. Users may customize the command used to
invoke a solver, providing a single mechanism for interacting with any SMT-LIB compatible
solver; customizing options using command line flags; and working around machine-specific
issues such as a solver being available under a different name or at a specific path.

Interactive solving
SMT-LIB was designed as an interactive interface, allowing users to modify the asser-
tions of an SMT problem and issue follow-up commands after a sat or unsat response.
Satisfiability.jl provides an interactive mode for these use cases, in which users can
manage the solver assertion stack using push!, pop!, and assert! commands.

Future work
Two planned improvements to Satisfiability.jl include adding support for the remaining
SMT-LIB standard theories and adding the ability to automatically determine the logic type of
an assertion, a property describing what types of variables and expressions are present, which
is used by solvers to determine the best algorithm for a particular problem.
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