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Summary
Dimensionality reduction is an essential tool in processing large datasets, enabling data com-
pression, pattern recognition, and reduced-order modeling. Many linear tools for dimensionality
reduction have been developed in fluid mechanics, where they have been formulated to identify
coherent structures and build reduced-order models of turbulent flows (Ranc et al., 2014).
This work proposes a major upgrade of the software package MODULO (MODal mULtiscale
pOd) (Ninni & Mendez, 2020), which was designed to perform Multiscale Proper Orthogonal
Decomposition (mPOD) (Mendez et al., 2019). In addition to implementing the classic Fourier
Transform (DFT) and Proper Orthogonal Decomposition (POD), MODULO now also allows
for computing Dynamic Mode Decomposition (DMD) (Schmid, 2010) as well as the Spectral
POD by Sieber et al. (2016), the Spectral POD by Towne et al. (2018) and a generalized
kernel-based decomposition akin to kernel PCA (Mendez, 2023). All algorithms are wrapped
in a ‘SciKit’-like Python API, which allows computing all decompositions in one line of code.
Documentation, exercises, and video tutorials are also provided to offer a primer on data drive
modal analysis.

Statement of Need
As extensively illustrated in recent reviews (Mendez, 2023; Taira et al., 2020), all modal
decompositions can be considered as special matrix factorizations. The matrix being factorized
collects (many) snapshots (samples) of a high-dimensional variable. The factorization provides
a basis for the matrix’s column and row spaces to identify the most essential patterns (modes)
according to a certain criterion. In what follows, we will refer to common terminologies in
fluid dynamics. Nevertheless, it is worth stressing that these tools can be applied to any
high-dimensional dataset to identify patterns and build reduced-order models (Mendez et
al., 2019). In the common arrangement encountered in fluid dynamics, the basis for the
column space is a set of ‘spatial structures’ while the basis for the row space is a set of
‘temporal structures’. These are paired by a scalar, which defines their relative importance.
The POD, closely related to Principal Component Analysis, yields modes with the highest
energy (variance) content and, in addition, guarantees their orthonormality by construction. In
the DFT, as implemented in MODULO, modes are defined to evolve as orthonormal complex
exponential in time. This implies that the associated frequencies are integer multiples of a
fundamental tone. The DMD generalizes the DFT by releasing the orthogonality constraint and
considering complex frequencies, i.e., modes that can vanish or explode. Both the constraint
of energy optimality and harmonic modes can lead to poor convergence and feature detection
performances. This motivated the development of hybrid methods such as the Spectral POD by
Towne et al. (2018), Spectral POD by Sieber et al. (2016), and Multiscale Proper Orthogonal
Decomposition (mPOD) (Mendez et al., 2019). The first can be seen as an optimally averaged
DMD, while the second combines POD and DFT with a filtering operation. Both SPODs
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assume statistically stationary data and are designed to identify harmonic (or quasi-harmonic)
modes. The mPOD combines POD with Multi-resolution Analysis (MRA) to provide optimal
modes within a prescribed frequency band. The mPOD modes are thus spectrally less narrow
than those obtained by the SPODs, but this allows for localizing them in time (i.e., potentially
having compact support in time). Finally, recent developments in nonlinear methods such as
kernel PCA and their applications to fluid dynamics (see Mendez (2023)) have motivated the
interest in the connection between nonlinear methods and the most general Karhunen-Loeve
expansion (KL). This generalizes the POD as the decomposition of data onto the eigenfunction
of a kernel function (the POD being a KL for the case of linear kernel).

MODULO provides a unified tool to carry out different decompositions with a shared API. This
simplifies comparing different techniques and streamlines their application to a given dataset
(problem). In addition, it is the only package that includes the mPOD and the generalized KL
with kernel functions interfacing with SciKit-learn. For decomposition-specific packages, we
refer the reader to many excellent Python APIs that are available to compute the POD, DMD,
and both SPODs, for example (Demo et al., 2018; Hatzissawidis & Sieber, 2023; Mengaldo &
Maulik, 2021; Rogowski et al., 2024).

New Features
This manuscript accompanies MODULO version 2.0. This version features four new decompo-
sitions: the two SPODs, the DMD, and the general KL. It also allows for different approaches
to computing the POD (interfacing with various SVD/EIG solvers from Scipy and SciKit-learn)
and a first implementation for nonuniform grids. The memory-saving feature has been improved,
and the software can now handle 3D decompositions.

Conclusions
MODULO is a versatile and user-friendly toolbox for data-driven modal decomposition. It
provides a unified interface to various decomposition methods, allowing for a straightforward
comparison and benchmarking. The package allows for modal decompositions in one line of
code. It is also designed to handle large datasets via the so-called “memory saving” option
and can handle nonuniformly sampled data.
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