
GATree: Evolutionary decision tree classifier in Python

Tadej Lahovnik 1* and Sašo Karakatič 1*

1 University of Maribor, Maribor, Slovenia * These authors contributed equally.
DOI: 10.21105/joss.06748

Software
• Review
• Repository
• Archive

Editor: Kelly Rowland
Reviewers:

• @FlyingPumba
• @WeakCha

Submitted: 06 March 2024
Published: 12 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
GATree is a Python library that simplifies the way decision trees are constructed and optimised for
classification machine learning tasks1. Leveraging the principles of standard genetic algorithms,
GATree allows for the dynamic evolution of decision tree structures, providing a flexible and
powerful tool for machine learning practitioners. Unlike traditional decision tree algorithms
that follow a deterministic path based on statistical models or information theory, GATree
introduces an evolutionary process where selection, mutation, and crossover operations guide
the development of optimised trees. This method enhances the adaptability and performance
of decision trees and opens new possibilities for addressing complex classification problems.
GATree stands out as a user-friendly, highly customisable solution, enabling users to tailor
fitness functions and algorithm parameters to meet specific project needs, whether in academic
research or practical applications.

Overview
At the heart of GATree’s methodology lies the integration of genetic algorithms with decision
tree construction, a process inspired by natural evolution (Koza, 1990). This evolutionary
approach begins with the random generation of an initial population of decision trees, each
evaluated for their fitness2 in solving a given supervised task on the training data. Fitness
evaluation typically considers factors such as classification accuracy and tree complexity, striving
for a balance that rewards both the quality of decisions and the generalisability of the decisions
(Barros et al., 2012; Bot & Langdon, 2000).

Figure 1: Overview of the evolution process.

1GATree is limited to classification tasks, with support for regression tasks planned for future releases.
2Fitness is the estimation of the quality of the individual decision trees, which determines whether a decision

tree survives into the next generation or not.

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

1

https://orcid.org/0009-0005-9689-2991
https://orcid.org/0000-0003-4441-9690
https://doi.org/10.21105/joss.06748
https://github.com/openjournals/joss-reviews/issues/6748
https://github.com/lahovniktadej/gatree
https://doi.org/10.5281/zenodo.13307404
https://nersc.gov/kelly-rowland
https://orcid.org/0000-0001-5147-0051
https://github.com/FlyingPumba
https://github.com/WeakCha
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06748

Following the principles of natural selection, trees that perform better are more likely to
contribute to the next generation, either through direct selection or by producing offspring via
crossover and mutation operations. Crossover involves the exchange of genetic material (i.e.,
tree nodes or branches) between two parent trees, while mutation introduces random changes
to a tree’s structure, promoting genetic diversity within the population. This iterative process
of selection, crossover, and mutation (presented in Figure 1) continues across generations,
with the algorithm converging towards more effective decision tree solutions over time.

Statement of need
The development of decision tree classifiers has long been a focal point in machine learning due
to their interpretability and efficacy in various machine learning tasks. Traditional algorithms,
however, often fall short when dealing with complex data structures or require extensive fine-
tuning to avoid overfitting or underfitting. GATree addresses these challenges by introducing
an evolutionary approach to decision tree optimisation, allowing for a more nuanced exploration
of the solution space than is possible with conventional methods (Karakatič & Podgorelec,
2018; Rivera-Lopez et al., 2022).

This evolutionary strategy ensures that GATree can adaptively fine-tune decision trees, exploring
a broader range of potential solutions and dynamically adjusting to achieve optimal performance.
Such flexibility is precious in fields where classification tasks are complex, and data can exhibit
varied and unpredictable patterns. Furthermore, GATree’s ability to customise fitness functions
allows for incorporating domain-specific knowledge into the evolutionary process, enhancing
the relevance and quality of the resulting decision trees.

Even though there are existing Python libraries that use various meta-heuristic approaches to
form machine learning tree models (i.e., gplearn3, tinyGP4 and TensorGP (Baeta et al., 2021)),
they use symbolic regression and not decision trees. In the broader context of machine learning
and data mining, GATree represents a significant advancement, offering a novel solution to
the limitations of existing libraries. By integrating the principles of standard genetic algorithms
with decision tree construction, GATree not only enhances the adaptability and performance
of these classifiers but also provides a rich platform for further research and development in
evolutionary computing and its applications in machine learning.

Architecture
GATree is a Python library with a modular and extensible architecture. The package is
implemented using two classes: GATree and Node. The GATree class is responsible for
the genetic algorithm by utilising operator classes, such as Selection (with optional elitism),
Crossover, and Mutation. The Node class handles the decision tree structure and its operations,
such as tree generation, tree evaluation, and class prediction.

The library is user-friendly and highly customisable - users can easily define custom fitness
functions5 and other parameters to meet their needs. It is implemented to be compatible with
the de-facto standard scikit-learn machine learning library; thus, the main methods of use (i.e.,
fit() and predict()) are present in GATree.

Usage and customisation
The following example shows how to perform classification of the iris dataset using the GATree
library.

3https://github.com/trevorstephens/gplearn
4https://github.com/moshesipper/tiny_gp
5The default fitness function is calculated as the combination of accuracy on the test set (preferring

better/higher accuracy) and the tree size (preferring smaller, more generalisable trees).

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

2

https://github.com/trevorstephens/gplearn
https://github.com/moshesipper/tiny_gp
https://doi.org/10.21105/joss.06748

import pandas as pd

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from gatree import GATree

Load the iris dataset

iris = load_iris()

X = pd.DataFrame(iris.data, columns=iris.feature_names)

y = pd.Series(iris.target, name='target')

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=10)

Create and fit the GATree classifier

gatree = GATree(n_jobs=16, random_state=32)

gatree.fit(X=X_train, y=y_train, population_size=100, max_iter=100)

Make predictions on the testing set

y_pred = gatree.predict(X_test)

Evaluate the accuracy of the classifier

acc = accuracy_score(y_test, y_pred)

In this example, we load the iris dataset and split it into training and testing sets. Next, we
create an instance of the GATree classifier and define its parameters, such as the number of
jobs to run in parallel and the random state for reproducibility. We then fit the classifier to the
training data using a population size of 100 and a maximum of 100 iterations. Finally, we make
predictions on the testing set and evaluate the accuracy of the classifier. The GATree classifier
uses a genetic algorithm to evolve and optimise the decision tree structure for the classification
task. This configuration achieves an accuracy of 100% on the testing set, demonstrating the
effectiveness of GATree for classification tasks.

Figure 2: Average fitness value and best fitness value at each iteration of the genetic algorithm for the
iris dataset.

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

3

https://doi.org/10.21105/joss.06748

Figure 2 provides a comprehensive visualisation of the genetic algorithm’s progress on the iris
dataset. The line graph on the left showcases the average fitness value6 of each decision tree
in the population across iterations, offering insight into the algorithm’s overall performance
over time. We can observe the most significant improvement in the average fitness value in
the first 50 iterations. We can see a slight decline in average fitness values after the 50th
iteration, indicating getting stuck in the local optimum while building the decision trees. The
slight variations in the final iterations indicate that the population is still changing due to
crossover and mutation. However, the average quality of the decision trees in the population
stays roughly the same. On the right half, a similar line graph displays the best fitness value7
at each iteration, providing a more detailed view of the algorithm’s progress. The graph shows
that the best fitness value improves rapidly in the first 30 iterations. The best decision tree is
unaffected by evolving local optimums around the 70th iteration as the average decision tree
does but remains near the global optimum, mainly due to the elitism operator.

Figure 3 shows the final decision tree built with the GATree classifier after fitting it to the iris
dataset.

Figure 3: Final decision tree built with the GATree classifier.

The fitness function can be customised to suit the specific requirements of the classification
task. For example, we can define a custom fitness function that considers the decision tree’s
size, penalising larger trees to encourage simplicity and interpretability. The following example
demonstrates defining and using a custom fitness function with the GATree classifier.

Custom fitness function

def fitness_function(root):

return 1 - accuracy_score(root.y_true, root.y_pred) + (0.05 * root.size())

Create and fit the GATree classifier

gatree = GATree(fitness_function=fitness_function, n_jobs=16, random_state=10)

gatree.fit(X=X_train, y=y_train, population_size=100, max_iter=100)

Make predictions on the testing set

y_pred = gatree.predict(X_test)

6The average fitness is the actual average value of all the fitness values of the entire population.
7The best fitness is only the one fitness value - the one from the best individual in the population.

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

4

https://doi.org/10.21105/joss.06748

Experiment
To test the performance of the GATree classifier, we conducted a series of experiments on the
adult dataset. The adult dataset contains 48.842 instances with 14 attributes (e.g., sex, age,
native country, marital status, education, work class, occupation, etc.). The outcome variable
is the income level, which is divided into two classes: <=50K and >50K (binary outcome,
suitable for classification tasks). The dataset is imbalanced, with 76% of instances belonging
to the <=50K class and 24% to the >50K class.

We evaluated the classifier’s accuracy and F1-score across 100 runs with different parameter
settings (see Table 1) and compared the results with other classifiers, such as DecisionTreeClas-
sifier8 (scikit-learn) and SymbolicClassifier9 (gplearn). The DecisionTreeClassifier is a standard
decision tree classifier, while the SymbolicClassifier is a symbolic regression classifier that uses
genetic programming to evolve symbolic expressions. The code used to conduct the experiment
is available in the GATree repository10.

The results demonstrate that GATree achieves competitive performance in terms of accuracy
and F1-score. GATree’s performance improves with more generations and higher population
sizes, indicating the importance of these parameters in the evolutionary process.

Table 1: Results of the conducted experiment.

Classifier Parameters

Avg. max
accuracy
(95% CI)

Avg. max
F1-score
(95% CI)

GATree mutation_probability=0.10
population_size=25
elite_size=1
max_depth=5
max_iter=50

0.800
(0.799, 0.801)

0.351
(0.341, 0.362)

GATree mutation_probability=0.15
population_size=50
elite_size=2
max_depth=5
max_iter=100

0.807
(0.806, 0.809)

0.379
(0.368, 0.390)

GATree mutation_probability=0.20
population_size=50
elite_size=5
max_depth=5
max_iter=200

0.810
(0.808, 0.811)

0.392
(0.382, 0.403)

DecisionTreeClassifier criterion=‘gini’
splitter=‘random’
max_depth=5

0.806
(0.804, 0.806)

0.451
(0.430, 0.473)

SymbolicClassifier parsimony_coefficient=0.01
population_size=50
generations=100
init_depth=(5, 5)

0.739
(0.722, 0.756)

0.034
(0.013, 0.055)

8https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
9https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-classifier

10https://github.com/lahovniktadej/gatree/blob/main/examples/joss_experiment.py

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

5

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-classifier
https://github.com/lahovniktadej/gatree/blob/main/examples/joss_experiment.py
https://doi.org/10.21105/joss.06748

References
Baeta, F., Correia, J., Martins, T., & Machado, P. (2021). TensorGP – genetic programming

engine in TensorFlow. Applications of Evolutionary Computation - 24th International
Conference, EvoApplications 2021. https://doi.org/10.1007/978-3-030-72699-7_48

Barros, R. C., Basgalupp, M. P., De Carvalho, A., & Freitas, A. A. (2012). A survey of
evolutionary algorithms for decision-tree induction. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, 42(3), 291–312. https://doi.org/10.
1109/TSMCC.2011.2157494

Bot, M. C., & Langdon, W. B. (2000). Application of genetic programming to induction of
linear classification trees. Genetic Programming: European Conference, EuroGP 2000,
Edinburgh, Scotland, UK, April 15-16, 2000. Proceedings 3, 247–258. https://doi.org/10.
1007/978-3-540-46239-2_18

Karakatič, S., & Podgorelec, V. (2018). Building boosted classification tree ensemble with
genetic programming. Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 165–166. https://doi.org/10.1145/3205651.3205774

Koza, J. R. (1990). Concept formation and decision tree induction using the genetic pro-
gramming paradigm. International Conference on Parallel Problem Solving from Nature,
124–128. https://doi.org/10.1007/BFb0029742

Rivera-Lopez, R., Canul-Reich, J., Mezura-Montes, E., & Cruz-Chávez, M. A. (2022). Induction
of decision trees as classification models through metaheuristics. Swarm and Evolutionary
Computation, 69, 101006. https://doi.org/10.1016/j.swevo.2021.101006

Lahovnik, & Karakatič. (2024). GATree: Evolutionary decision tree classifier in Python. Journal of Open Source Software, 9(100), 6748.
https://doi.org/10.21105/joss.06748.

6

https://doi.org/10.1007/978-3-030-72699-7_48
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1007/978-3-540-46239-2_18
https://doi.org/10.1007/978-3-540-46239-2_18
https://doi.org/10.1145/3205651.3205774
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1016/j.swevo.2021.101006
https://doi.org/10.21105/joss.06748

	Summary
	Overview
	Statement of need
	Architecture
	Usage and customisation
	Experiment

	References

