
nimbleHMC: An R package for Hamiltonian Monte
Carlo sampling in nimble
Daniel Turek 1¶, Perry de Valpine 2, and Christopher J. Paciorek2

1 Lafayette College, USA 2 University of California, USA ¶ Corresponding author
DOI: 10.21105/joss.06745

Software
• Review
• Repository
• Archive

Editor: Johanna Bayer
Reviewers:

• @matt-graham
• @larryshamalama

Submitted: 14 January 2024
Published: 10 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Markov chain Monte Carlo (MCMC) algorithms are widely used for fitting hierarchical models
to data. MCMC is the predominant tool used in Bayesian analyses to generate samples from
the posterior distribution of model parameters conditional on observed data. MCMC is not a
single algorithm, but rather a framework in which various sampling methods (samplers) are
assigned to operate on subsets of unobserved parameters. There exists a vast set of valid
samplers to draw upon, which differ in complexity, autocorrelation of samples produced, and
applicability.

Hamiltonian Monte Carlo [HMC; Radford M. Neal (2011)] sampling is one such technique,
applicable to continuous-valued parameters, which uses gradients to generate large transitions
in parameter space. The resulting samples have low autocorrelation, and therefore have high
information content, relative for example to an equal-length sequence of highly autocorrelated
samples. The No-U-Turn (NUTS) variety of HMC sampling [HMC-NUTS; Hoffman & Gelman
(2014)] greatly increases the usability of HMC by introducing a recursive tree of numerical
integration steps that makes it unnecessary to pre-specify a fixed number of steps. Hoffman
& Gelman (2014) also introduce a self-tuning scheme for the step size, resulting in a fully
automated HMC sampler with no need for manual tuning.

Many software packages offer implementations of MCMC, such as nimble (de Valpine et
al., 2017), WinBUGS (Lunn et al., 2000), JAGS (Plummer, 2003), PyMC (Fonnesbeck et al.,
2015), NumPyro (Phan et al., 2019), TensorFlow Probability (Pang et al., 2020), and Stan

(Carpenter et al., 2017), among others. These packages differ, however, in their approaches to
sampler assignments. As sampling techniques vary in computation and quality of the samples,
the effectiveness of the MCMC algorithms will vary depending on the software and model.

A key design feature of nimble’s MCMC is to allow easy customization of sampler assignments
from a high-level interface. Users may assign any valid samplers to each parameter or group
of parameters, selecting from samplers provided with nimble or samplers they have written
in nimble’s algorithm programming system. Samplers provided with nimble include random
walk Metropolis-Hastings sampling (Robert & Casella, 1999), slice sampling (Radford M. Neal,
2003), elliptical slice sampling (Murray et al., 2010), automated factor slice sampling (Tibbits
et al., 2014), conjugate sampling (George et al., 1993), and others.

The nimbleHMC package provides implementations of two versions of HMC-NUTS sampling
for use within nimble, both written in nimble’s algorithm programming system within R.
Specifically, nimbleHMC provides the original (“classic”) HMC-NUTS algorithm as developed in
Hoffman & Gelman (2014), and a modern version of HMC-NUTS sampling matching the HMC
sampler available in version 2.32.2 of Stan (Stan Development Team, 2023). The samplers
provided in nimbleHMC can be assigned to any continuous-valued parameters, and may be used
in combination with other samplers provided with nimble.

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

1

https://orcid.org/0000-0002-1453-1908
https://orcid.org/0000-0002-8329-6796
https://doi.org/10.21105/joss.06745
https://github.com/openjournals/joss-reviews/issues/6745
https://github.com/nimble-dev/nimbleHMC
https://doi.org/10.5281/zenodo.12658544
https://orcid.org/0000-0003-4891-6256
https://github.com/matt-graham
https://github.com/larryshamalama
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06745

Example
The following example demonstrates fitting a hierarchical model to data using nimbleHMC. We
use the European Dipper (Cinclus cinclus) dataset drawn from ecological capture-recapture
(e.g., Lebreton et al., 1992; Turek et al., 2016). Modelling includes both continuous parameters
to undergo HMC sampling and discrete parameters that cannot be sampled via HMC.

Individual birds are captured, tagged, and potentially recaptured on subsequent sighting
occasions. Data is a 255 × 7 binary-valued array of capture histories of 255 uniquely tagged
birds over 7 years. Model parameters are detection probability (𝑝), and annual survival rates on
non-flood years (𝜙1) and flood years (𝜙2). Data is provided in the R package mra (McDonald,
2018), and individuals which are first sighted on the final (7𝑡ℎ) sighting occasion do not
contribute to inference, and are removed from the sighting histories.

library(mra)

data(dipper.data)

dipper <- dipper.data[,1:7]

y <- dipper[apply(dipper, 1, which.max) < 7,]

We specify the hierarchical model using uniform priors on the interval [0, 1] for all parameters.
Binary-valued latent states 𝑥𝑖,𝑡 represent the true alive (1) or dead (0) state of individual 𝑖 on
year 𝑡. Doing so allows the survival process to be modelled as 𝑥𝑖,𝑡+1 ∼ Bernoulli(𝜙𝑓𝑡 ⋅ 𝑥𝑖,𝑡)
where 𝑓𝑡 indicates the flood/non-flood history of year 𝑡. The model structure conditions on the
first observation of each individual, where first𝑖 is the first observation period of individual 𝑖,
and 𝑥𝑖,first𝑖 is assigned the value one. Observations are modelled as 𝑦𝑖,𝑡 ∼ Bernoulli(𝑝 ⋅ 𝑥𝑖,𝑡).

library(nimbleHMC)

code <- nimbleCode({

phi[1] ~ dunif(0, 1)

phi[2] ~ dunif(0, 1)

p ~ dunif(0, 1)

for(i in 1:N) {

x[i,first[i]] <- 1

for(t in (first[i]+1):T) {

x[i,t] ~ dbern(phi[f[t]] * x[i,t-1])

y[i,t] ~ dbern(p * x[i,t])

}

}

})

A nimble model object is now built. The argument buildDerivs = TRUE results in under-the-
hood support for obtaining derivatives from model calculations, as necessary for derivative-based
HMC sampling.

Rmodel <- nimbleModel(

code,

constants = list(N = nrow(y), T = ncol(y), f = c(1,2,2,1,1,1,1),

first = apply(y, 1, which.max)),

data = list(y = y),

inits = list(phi = c(0.5, 0.5), p = 0.5, x = array(1, dim(y))),

buildDerivs = TRUE)

Next we create an MCMC configuration object, which specifies the sampling algorithm to
be applied to each parameter. By default, configureMCMC uses nimble’s default sampler
assignments of adaptive random walk Metropolis-Hastings [RW sampler; Robert & Casella
(1999)] for each parameter, and a binary Gibbs sampler for each 𝑥𝑖,𝑡 latent state.

conf <- configureMCMC(Rmodel)

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

2

https://doi.org/10.21105/joss.06745

RW sampler (3)

- phi[] (2 elements)

- p

binary sampler (848)

- x[] (848 elements)

Now we customize the MCMC configuration object to use HMC sampling for the model
parameters. replaceSamplers replaces the samplers operating on 𝜙1, 𝜙2 and 𝑝 with the
modern HMC-NUTS sampler (called the NUTS sampler) provided in nimbleHMC. The classic
version of the HMC-NUTS sampler could be assigned by specifying type = "NUTS_classic".

conf$replaceSamplers(target = c("phi", "p"), type = "NUTS")

conf$printSamplers(byType = TRUE)

NUTS sampler (1)

- phi, p

binary sampler (848)

- x[] (848 elements)

Alternatively, the convenience function configureHMC could be used to create an identical
MCMC configuration, applying HMC-NUTS sampling to 𝜙1, 𝜙2 and 𝑝, and default binary
samplers for discrete parameters.

Now we build and compile the MCMC algorithm.

Rmcmc <- buildMCMC(conf)

Cmodel <- compileNimble(Rmodel)

Cmcmc <- compileNimble(Rmcmc, project = Rmodel)

We execute the MCMC for 20,000 iterations, and discard the initial 10,000 samples as burn-in.

set.seed(0)

samples <- runMCMC(Cmcmc, niter = 20000, nburnin = 10000)

Finally, posterior summary statistics are calculated for the model parameters.

samplesSummary(samples, round = 2)

Mean Median St.Dev. 95%CI_low 95%CI_upp

p 0.90 0.90 0.03 0.84 0.95

phi[1] 0.58 0.58 0.03 0.52 0.63

phi[2] 0.50 0.50 0.06 0.39 0.61

Traceplots and posterior density plots are generated using the samplesPlot function from the
basicMCMCplots package.

basicMCMCplots::samplesPlot(samples, legend.location = "topleft")

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

3

https://doi.org/10.21105/joss.06745

0 5000 10000

0.
4

0.
6

0.
8

1.
0

Traceplots

0.4 0.6 0.8 1.0

Posterior Densities
p
phi[1]
phi[2]

Statement of need
HMC is recognized as a state-of-the-art MCMC sampling algorithm. As testimony to this,
software packages such as Stan exclusively employ HMC sampling. Consequently, such software
cannot operate on models containing discrete parameters (upon which HMC cannot operate),
or would require marginalization of the likelihood to remove these discrete dimensions from
the sampling problem. Models with discrete parameters arise in a range of statistical motifs
including hidden Markov models, finite mixture models, and generally in the presence of
unobserved categorical data (Bartolucci et al., 2022). In contrast, other mainstream MCMC
packages (WinBUGS, OpenBUGS and JAGS) can sample discrete parameters, but provide no
facilities for HMC sampling. This leaves the use case of HMC sampling of hierarchical models
that also contain discrete parameters.

nimbleHMC accomplishes this, by providing two HMC samplers that operate inside nimble’s
MCMC engine. The base nimble package provides a variety of MCMC sampling algorithms,
as well as the ability to customize MCMC sampler assignments. nimbleHMC augments the set
of sampling algorithms provided in nimble with two options for HMC sampling, which can be
used alongside any other samplers. The example presented here demonstrates precisely that:
HMC sampling operating alongside discrete samplers, which is not possible without the use of
nimbleHMC.

Which combination of samplers will optimize MCMC efficiency for any particular problem is an
open question. One metric of comparison is the effective sample size of the samples generated
per unit runtime of the algorithm, which quantifies how quickly an MCMC algorithm generates
information about parameter posteriors. This metric is studied in Turek et al. (2017) and
Ponisio et al. (2020), with the conclusion that the best sampling strategy is problem-specific
rather than universal. For that reason, the ability to mix-and-match samplers from a large pool
of candidates is important from both practical and theoretical standpoints. Indeed, packages
such as compareMCMCs (de Valpine et al., 2022) exist specifically to compare the relative
performance of MCMC algorithms. The addition of HMC sampling provided by nimbleHMC

supports new practical combinations for applied MCMC, as well as facilitates a deeper study
of Bayesian modelling.

References
Bartolucci, F., Pandolfi, S., & Pennoni, F. (2022). Discrete latent variable models. An-

nual Review of Statistics and Its Application, 9, 425–452. https://doi.org/10.1146/
annurev-statistics-040220-091910

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

4

https://doi.org/10.1146/annurev-statistics-040220-091910
https://doi.org/10.1146/annurev-statistics-040220-091910
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.21105/joss.06745

de Valpine, P., Paganin, S., & Turek, D. (2022). compareMCMCs: An R package for studying
MCMC efficiency. Journal of Open Source Software, 7(69), 3844. https://doi.org/10.
21105/joss.03844

de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Lang, D. T., & Bodik,
R. (2017). Programming with models: Writing statistical algorithms for general model
structures with NIMBLE. Journal of Computational and Graphical Statistics, 26(2), 403–413.
https://doi.org/10.1080/10618600.2016.1172487

Fonnesbeck, C., Patil, A., Huard, D., & Salvatier, J. (2015). PyMC: Bayesian stochastic
modelling in python. Astrophysics Source Code Library, ascl–1506.

George, E. I., Makov, U., & Smith, A. (1993). Conjugate likelihood distributions. Scandinavian
Journal of Statistics, 147–156.

Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1), 1593–1623.

Lebreton, J.-D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). Modeling survival
and testing biological hypotheses using marked animals: A unified approach with case
studies. Ecological Monographs, 62(1), 67–118. https://doi.org/10.2307/2937171

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a bayesian modelling
framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.
https://doi.org/10.1023/A:1008929526011

McDonald, T. (2018). Mra: Mark-recapture analysis. https://CRAN.R-project.org/package=
mra

Murray, I., Adams, R., & MacKay, D. (2010). Elliptical slice sampling. Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, 541–548.

Neal, Radford M. (2003). Slice sampling. The Annals of Statistics, 31(3), 705–767. https:
//doi.org/10.1214/aos/1056562461

Neal, Radford M. (2011). Handbook of markov chain monte carlo (pp. 113–162). Chapman;
Hall/CRC.

Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensorflow: A review.
Journal of Educational and Behavioral Statistics, 45(2), 227–248. https://doi.org/10.
3102/1076998619872761

Phan, D., Pradhan, N., & Jankowiak, M. (2019). Composable effects for flexible and
accelerated probabilistic programming in NumPyro. arXiv Preprint arXiv:1912.11554.
https://doi.org/10.48550/arXiv.1912.11554

Plummer, M. (2003). JAGS: A program for analysis of bayesian graphical models using
gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, 124, 1–10.

Ponisio, L. C., de Valpine, P., Michaud, N., & Turek, D. (2020). One size does not fit
all: Customizing MCMC methods for hierarchical models using NIMBLE. Ecology and
Evolution, 10(5), 2385–2416. https://doi.org/10.1002/ece3.6053

Robert, C. P., & Casella, G. (1999). The metropolis—hastings algorithm. In Monte carlo
statistical methods (pp. 231–283). Springer.

Stan Development Team. (2023). Stan modeling language users guide and reference manual,
version 2.32.2. https://mc-stan.org

Tibbits, M. M., Groendyke, C., Haran, M., & Liechty, J. C. (2014). Automated factor slice
sampling. Journal of Computational and Graphical Statistics, 23(2), 543–563. https:
//doi.org/10.1080/10618600.2013.791193

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

5

https://doi.org/10.21105/joss.03844
https://doi.org/10.21105/joss.03844
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.2307/2937171
https://doi.org/10.1023/A:1008929526011
https://CRAN.R-project.org/package=mra
https://CRAN.R-project.org/package=mra
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.3102/1076998619872761
https://doi.org/10.3102/1076998619872761
https://doi.org/10.48550/arXiv.1912.11554
https://doi.org/10.1002/ece3.6053
https://mc-stan.org
https://doi.org/10.1080/10618600.2013.791193
https://doi.org/10.1080/10618600.2013.791193
https://doi.org/10.21105/joss.06745

Turek, D., de Valpine, P., & Paciorek, C. J. (2016). Efficient markov chain monte carlo
sampling for hierarchical hidden markov models. Environmental and Ecological Statistics,
23, 549–564. https://doi.org/10.1007/s10651-016-0353-z

Turek, D., de Valpine, P., Paciorek, C. J., & Anderson-Bergman, C. (2017). Automated
parameter blocking for efficient markov chain monte carlo sampling. Bayesian Analysis,
12(2), 465–490. https://doi.org/10.1214/16-BA1008

Turek et al. (2024). nimbleHMC: An R package for Hamiltonian Monte Carlo sampling in nimble. Journal of Open Source Software, 9(99), 6745.
https://doi.org/10.21105/joss.06745.

6

https://doi.org/10.1007/s10651-016-0353-z
https://doi.org/10.1214/16-BA1008
https://doi.org/10.21105/joss.06745

	Summary
	Example
	Statement of need
	References

