
REHO: A Decision Support Tool for Renewable
Energy Communities
Dorsan Lepour 1¶, Joseph Loustau 1, Cédric Terrier 1, and François
Maréchal 1

1 Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne,
Switzerland ¶ Corresponding author

DOI: 10.21105/joss.06734

Software
• Review
• Repository
• Archive

Editor: Mojtaba Barzegari
Reviewers:

• @nmstreethran
• @willu47
• @hgandhi2411

Submitted: 11 March 2024
Published: 20 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The transition to sustainable energy systems in the face of growing renewable energy adoption
and electrification is a complex and critical challenge. The Renewable Energy Hub Optimizer
(REHO) emerges as a powerful decision support tool designed to investigate the deployment
of energy conversion and storage technologies in this evolving landscape. REHO leverages
a Mixed-Integer Linear Programming (MILP) framework combined with a Dantzig-Wolfe
decomposition algorithm to simultaneously address the optimal design and operation of district
energy systems, catering to multi-objective considerations across economic, environmental,
and efficiency criteria.

REHO is deployed as an open-source and collaborative Python library, available as a PyPI
package and supported by comprehensive documentation. The documentation website includes
step-by-step instructions, details about the mathematical background and model foundations,
as well as a list of academic publications, conference proceedings, research projects, and other
works related to REHO.

This paper introduces REHO and highlights its key features and contributions to the field of
sustainable energy system planning.

Statement of need
Cities around the world are moving towards increasing the penetration of local energy harvesting
and storage capacities to render their energy consumption more sustainable and less dependent
on a geopolitical context. The intensification of renewables deployment is witnessed in the
past decade and keeps continuing, leading to important techno-economic-social trade-offs in
energy strategy. This transition blurs the boundaries between demand and supply and creates
new types of stakeholders. Adopting a district-level approach for energy system planning
seems thus particularly relevant, as it promotes the valorization of endogenous resources and
enables economies of scale while preserving local governance (Heldeweg & Saintier, 2020). The
emergence of the concept of energy communities is a clear example of this growing interest
for energy planning at the neighborhood scale (Doci et al., 2014). Energy communities are
expected to play a pivotal role in the ongoing energy transition by fostering decentralized,
sustainable, and community-driven approaches to energy production and consumption. Through
the collaborative efforts of residents, utilities, and institutions, energy communities offer a
techno-economic framework to support the paradigm shift from centralized to distributed and
district-level energy systems (Caramizaru & Uihlein, 2020).

Optimizing a district-level energy system is a complex and computationally intensive task
due to its network structure and interdependent decision variables. Facing this problem, a
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common method is to fix some degrees of freedom through assumptions and scenarios based
on expert knowledge (Pickering & Choudhary, 2019; Reynolds et al., 2019). Many studies in
literature assume energy demand profiles (Murray et al., 2020) or predetermine the energy
system configuration (Alhamwi et al., 2018; Chakrabarti et al., 2019; Kramer et al., 2017).
The issue with such assumptions is the consideration of energy carriers to be delivered instead
of energy end-use demands to be satisfied. By assuming a priori some investment decisions
into energy capacities, the solution space is reduced, and such model does not unveil the full
potential of energy communities. However, modeling subsystems as entities embedded in a
larger system should reveal the interdependency of the decision-making and exploit the main
benefits of energy communities to coordinate decisions both at the building- and district-level.

In the field of district energy systems design, diverse open-source decision support tools exist,
but only partially meet the challenges that studying energy communities represents:

• EnergyPlus (Crawley et al., 2001), and its extensions such as CESAR-P (Orehounig et
al., 2022), are simulation models, lacking an optimization feature.

• Calliope (Pfenninger & Pickering, 2018) and ModelicaBuildings (Wetter et al., 2014)
do not support multi-objective optimization.

• Some tools focus on a specific energy carrier; we can mention here Clover (Sandwell et
al., 2023) for electricity, PyHeatDemand (Jüstel & Strozyk, 2024) for heating, or RHEIA
(Coppitters et al., 2022) for hydrogen. While they are certainly relevant to specific areas
of study, they do not adequately grasp the holistic nature of optimizing a multi-carrier
energy system.

• OSeMOSYS (Howells et al., 2011), EnergyPLAN (Lund et al., 2021) or EnergyScope

(Limpens et al., 2019) focus on national energy systems and do not model buildings and
their interactions with sufficient granularity (e.g., no heat cascade and distinction of
temperature sets).

• Eventually, CityEnergyAnalyst (Fonseca et al., 2024) or oemof-solph (Krien et al.,
2024) – and its extensions such as SESMG (Klemm et al., 2023) –, provide interesting
frameworks for buildings energy systems optimization, but their district upscaling feature
does not allow to explore the overarching implications of building-level decisions so that
their investigations predominantly hinge on an absolute district-level perspective without
distinction of the different stakeholders.

This gap has motivated the development of Renewable Energy Hub Optimizer (REHO), a
comprehensive decision support tool for energy system planning at the district-level, considering
simultaneously diverse end-use demands, multi-energy integration, and building interactions.

Initially developed within the Industrial Process and Energy Systems Engineering research
group (IPESE, EPFL), REHO is now made public, with a diverse target audience extending
from academia and research projects to decision-makers for municipalities, energy utilities and
industrial sectors.

Model foundations
The energy hub concept (Mohammadi et al., 2017) is used to model an energy community
where multi-energy carriers can supply diverse end-use demands through building units and
district units optimally interconnected and operated.
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Figure 1: District energy hub model in REHO.

Figure 1 displays the input data necessary to characterize a district-level energy hub to be
optimized with REHO:

• The geographic boundaries of the considered territory;
• The end-use demands, resulting from the building stock characteristics and local weather;
• The technologies available and their specifications regarding cost, life cycle, and efficiency;
• The endogenous resources;
• And the energy market prices for district imports and exports.

The optimal solution minimizing the specified objective function will then be fully characterized
by the decision variables defining the energy system configuration. These decision variables
are the installed capacities of the building and district units among the available technologies,
their operation throughout a typical year, and the resulting energy flows (building interactions
and district imports/exports).

Implementation

REHO exploits the benefits of two programming languages to explore the solution space defined
by the district energy hub input data. Figure 2 illustrates the tool architecture:

• The data management structure is written in Python and used for input parameters
preprocessing, and decision variables postprocessing.

• The optimization model is written in AMPL, encompassing objective functions, modeling
equations, and constraints at building-level and district-level.
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Figure 2: Diagram of REHO architecture.

Data reduction

The task of optimally designing and scheduling energy systems with a high share of renew-
able energies is complex and computationally demanding. REHO includes machine learning
techniques to cluster yearly input data. The model operates in the conventional way with
typical periods of 24 timesteps, but it can be freely adapted to a finer or coarser granularity as
required.

MILP formulation with decomposition

A Dantzig-Wolfe decomposition is applied to the overall problem to define a master problem
(MP) for district-level perspective and one sub-problem (SP) for each building. Linking
constraints allow the problem to iteratively converge to the solution minimizing the global
objective function: the MP sends district-level marginal costs to the SPs, which in turn send
back building-level design proposals.

Embedded features
Multi-Service Consideration

REHO encompasses a wide range of end-use demands, including thermal comfort (heating
and cooling loads), domestic hot water, domestic electricity, mobility, and information and
communication technologies (ICT) energy needs.

Multi-Energy Integration

REHO incorporates various energy sources and networks, such as electricity, fossil fuels, biofuels
(hydrogen, biomethane), and district heating and cooling networks. This holistic approach
ensures a comprehensive representation of the energy landscape.

Multi-Scale Capabilities
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REHO’s flexibility spans various scales, from individual buildings to entire districts. The
district-scale optimization feature capitalizes on synergies between buildings, allowing them to
function as an energy community and enabling energy flows between buildings. In addition,
such an approach opens the possibility of deploying district-level infrastructures.

Multi-Objective Optimization

REHO’s versatility extends to multi-objective optimization, accommodating objectives related
to economic (capital and operational costs), environmental (life cycle analysis and global
warming potential), and efficiency criteria. Epsilon constraints provide fine-grained control,
enabling decision-makers to explore trade-offs and identify Pareto fronts.

PV orientation

Given the pivotal role of photovoltaic (PV) systems in the energy transition, their optimal
deployment is of paramount importance and must consider the specific characteristics of the
building morphology, the local solar irradiance, and the local power grid integration. REHO
integrates the deployment of solar panels on roofs and facades, with the possibility of taking
into consideration the orientation of surfaces.

Electric mobility

REHO enables the integration of electric vehicles into neighborhoods, including the possibility
of smart charging, unidirectional or bidirectional. The fleet of electric vehicles can thus be
used to provide an energy storage service.

Grid constraints

As the electrification of diverse sectors gains momentum, the demands placed on the electricity
grid are expected to further escalate. The existing electrical grid, originally designed for
centralized power generation and unidirectional energy flows, now faces new demands and
complexities. REHO allows for the consideration of the local grid specifications, through line
and transformer capacities, as well as peak power shaving and curtailment measures.

District heating and cooling

REHO enables the deployment of district heating and cooling networks, with consideration
of several heat transfer fluids and distribution temperatures. Infrastructure costs are also
incorporated, based on the topology of the considered neighborhood.

Interoperability

From a technical standpoint, REHO is designed to be user-friendly, with a modular structure
that allows for easy customization and extension. The interoperability of REHO boasts its
capability to interface and exchange information with other tools, enabling extensive studies in
the field of energy communities and for a wide range of both research and practial applications.
The Relases section of REHO documentation keeps track of all publications and public projects
related to REHO.

Acknowledgements
The development of REHO was carried out within the Industrial Process and Energy Systems
Engineering research group (IPESE), EPFL. The authors acknowledge the financial support
from the Services Industriels de Genève (SIG), Switzerland, and from the Swiss Federal Office of
Energy (SFOE). The authors also express their gratitude to Paul Stadler and Luise Middelhauve,
whose PhD theses have laid the foundations of the model.

Lepour et al. (2024). REHO: A Decision Support Tool for Renewable Energy Communities. Journal of Open Source Software, 9(103), 6734.
https://doi.org/10.21105/joss.06734.

5

https://doi.org/10.21105/joss.06734


References
Alhamwi, A., Medjroubi, W., Vogt, T., & Agert, C. (2018). Modelling urban energy

requirements using open source data and models. Applied Energy, 231, 1100–1108.
https://doi.org/10.1016/j.apenergy.2018.09.164

Caramizaru, E., & Uihlein, A. (2020). Energy communities: An overview of energy and social
innovation. In JRC Publications Repository. https://publications.jrc.ec.europa.eu/reposi-
tory/handle/JRC119433. https://doi.org/10.2760/180576

Chakrabarti, A., Proeglhoef, R., Turu, G. B., Lambert, R., Mariaud, A., Acha, S., Markides,
C. N., & Shah, N. (2019). Optimisation and analysis of system integration between
electric vehicles and UK decentralised energy schemes. Energy, 176, 805–815. https:
//doi.org/10.1016/j.energy.2019.03.184

Coppitters, D., Tsirikoglou, P., Paepe, W. D., Kyprianidis, K., Kalfas, A., & Contino, F. (2022).
RHEIA: Robust design optimization of renewable Hydrogen and dErIved energy cArrier
systems. Journal of Open Source Software, 7(75), 4370. https://doi.org/10.21105/joss.
04370

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O.,
Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J., & Glazer, J. (2001). EnergyPlus:
Creating a new-generation building energy simulation program. Energy and Buildings,
33(4), 319–331. https://doi.org/10.1016/S0378-7788(00)00114-6

Doci, G., Vasileiadou, E., & Petersen, A. (2014). Exploring the transition potential of renewable
energy communities. Working Papers, 14-06. https://doi.org/10.1016/j.futures.2015.01.
002

Fonseca, J., Thomas, D., Mok, R., Hsieh, S., Sreepathi, B. K., Happle, G., Rogenhofer, L.,
Niffeler, M., Shi, Z., Romero, M. M., Jack-Hawthorne, Khayatian, F., Riegelbauer, E.,
lguilhermers, Ong, B. L., orenkiwi, jarunan, MeshkinKiya, M., Sulzer, M., … Badger, T.
G. (2024). Architecture-building-systems/CityEnergyAnalyst: CityEnergyAnalyst v.3.35.4.
Zenodo. https://doi.org/10.5281/zenodo.10697424

Heldeweg, M. A., & Saintier, S. (2020). Renewable energy communities as “socio-legal
institutions”: A normative frame for energy decentralization? Renewable and Sustainable
Energy Reviews, 119(C). https://doi.org/10.1016/j.rser.2019.109518

Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A.,
Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open
Source Energy Modeling System: An introduction to its ethos, structure and development.
Energy Policy, 39(10), 5850–5870. https://doi.org/10.1016/j.enpol.2011.06.033

Jüstel, A., & Strozyk, F. (2024). PyHeatDemand - Processing Tool for Heat Demand Data.
Journal of Open Source Software, 9(95), 6275. https://doi.org/10.21105/joss.06275

Klemm, C., Becker, G., Tockloth, J. N., Budde, J., & Vennemann, P. (2023). The Spreadsheet
Energy System Model Generator (SESMG): A tool for the optimization of urban energy
systems. Journal of Open Source Software, 8(89), 5519. https://doi.org/10.21105/joss.
05519

Kramer, M., Jambagi, A., & Cheng, V. (2017, August). Bottom-up Modeling of Residential
Heating Systems for Demand Side Management in District Energy System Analysis and
Distribution Grid Planning. 2017 Building Simulation Conference. https://doi.org/10.
26868/25222708.2017.183

Krien, U., Kaldemeyer, C., Günther, S., Schönfeldt, P., Simon, H., Launer, J., Röder, J.,
Möller, C., Kochems, J., Huyskens, H., Developer, A., Schachler, B., Pl, F., Sayadi, S.,
Duc, P.-F., Endres, J., Büllesbach, F., Fuhrländer, D., Developer, A., … Gering, M.-C.

Lepour et al. (2024). REHO: A Decision Support Tool for Renewable Energy Communities. Journal of Open Source Software, 9(103), 6734.
https://doi.org/10.21105/joss.06734.

6

https://doi.org/10.1016/j.apenergy.2018.09.164
https://doi.org/10.2760/180576
https://doi.org/10.1016/j.energy.2019.03.184
https://doi.org/10.1016/j.energy.2019.03.184
https://doi.org/10.21105/joss.04370
https://doi.org/10.21105/joss.04370
https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1016/j.futures.2015.01.002
https://doi.org/10.1016/j.futures.2015.01.002
https://doi.org/10.5281/zenodo.10697424
https://doi.org/10.1016/j.rser.2019.109518
https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.21105/joss.06275
https://doi.org/10.21105/joss.05519
https://doi.org/10.21105/joss.05519
https://doi.org/10.26868/25222708.2017.183
https://doi.org/10.26868/25222708.2017.183
https://doi.org/10.21105/joss.06734


(2024). Oemof.solph. https://doi.org/10.5281/zenodo.596235

Limpens, G., Moret, S., Jeanmart, H., & Maréchal, F. (2019). EnergyScope TD: A novel
open-source model for regional energy systems. Applied Energy, 255, 113729. https:
//doi.org/10.1016/j.apenergy.2019.113729

Lund, H., Thellufsen, J. Z., Østergaard, P. A., Sorknæs, P., Skov, I. R., & Mathiesen, B. V.
(2021). EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy, 1,
100007. https://doi.org/10.1016/j.segy.2021.100007

Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., & Yousefi, H. (2017). Energy hub:
From a model to a concept – A review. Renewable and Sustainable Energy Reviews, 80,
1512–1527. https://doi.org/10.1016/j.rser.2017.07.030

Murray, P., Carmeliet, J., & Orehounig, K. (2020). Multi-Objective Optimisation of Power-to-
Mobility in Decentralised Multi-Energy Systems. Energy, 205, 117792. https://doi.org/10.
1016/j.energy.2020.117792

Orehounig, K., Fierz, L., Allan, J., Eggimann, S., Vulic, N., & Bojarski, A. (2022). CESAR-P:
A dynamic urban building energy simulation tool. Journal of Open Source Software, 7 (78),
4261. https://doi.org/10.21105/joss.04261

Pfenninger, S., & Pickering, B. (2018). Calliope: A multi-scale energy systems modelling
framework. Journal of Open Source Software, 3(29), 825. https://doi.org/10.21105/joss.
00825

Pickering, B., & Choudhary, R. (2019). District energy system optimisation under uncertain
demand: Handling data-driven stochastic profiles. Applied Energy, 236, 1138–1157.
https://doi.org/10.1016/j.apenergy.2018.12.037

Reynolds, J., Ahmad, M. W., Rezgui, Y., & Hippolyte, J.-L. (2019). Operational supply
and demand optimisation of a multi-vector district energy system using artificial neural
networks and a genetic algorithm. Applied Energy, 235, 699–713. https://doi.org/10.
1016/j.apenergy.2018.11.001

Sandwell, P., Winchester, B., Beath, H., & Nelson, J. (2023). CLOVER: A modelling framework
for sustainable community-scale energy systems. Journal of Open Source Software, 8(82),
4799. https://doi.org/10.21105/joss.04799

Wetter, M., Zuo, W., Nouidui, T. S., & Pang, X. (2014). Modelica Buildings library. Journal
of Building Performance Simulation, 7(4), 253–270. https://doi.org/10.1080/19401493.
2013.765506

Lepour et al. (2024). REHO: A Decision Support Tool for Renewable Energy Communities. Journal of Open Source Software, 9(103), 6734.
https://doi.org/10.21105/joss.06734.

7

https://doi.org/10.5281/zenodo.596235
https://doi.org/10.1016/j.apenergy.2019.113729
https://doi.org/10.1016/j.apenergy.2019.113729
https://doi.org/10.1016/j.segy.2021.100007
https://doi.org/10.1016/j.rser.2017.07.030
https://doi.org/10.1016/j.energy.2020.117792
https://doi.org/10.1016/j.energy.2020.117792
https://doi.org/10.21105/joss.04261
https://doi.org/10.21105/joss.00825
https://doi.org/10.21105/joss.00825
https://doi.org/10.1016/j.apenergy.2018.12.037
https://doi.org/10.1016/j.apenergy.2018.11.001
https://doi.org/10.1016/j.apenergy.2018.11.001
https://doi.org/10.21105/joss.04799
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.21105/joss.06734

	Summary
	Statement of need
	Model foundations
	Implementation
	Data reduction
	MILP formulation with decomposition


	Embedded features
	Acknowledgements
	References

