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Summary
nimCSO is a high-performance tool implementing several methods for selecting components
(data dimensions) in compositional datasets, which optimize the data availability and density for
applications such as machine learning. Making said choice is a combinatorically hard problem
for complex compositions existing in high-dimensional spaces due to the interdependency of
components being present. Such spaces are encountered across many scientific disciplines (see
Statement of Need), including materials science, where datasets on Compositionally Complex
Materials (CCMs) often span 20-45 chemical elements, 5-10 processing types, and several
temperature regimes, for up to 60 total data dimensions. This challenge also exists in everyday
contexts, such as study of cooking ingredients (Ahn et al., 2011), which interact in various
recipes, giving rise to questions like “Given 100 spices at the supermarket, which 20, 30, or 40
should I stock in my pantry to maximize the number of unique dishes I can spice according to
recipe?”. Critically, this is not as simple as frequency-based selection because, e.g., removing
less common nutmeg and cinnamon from your shopping list will prevent many recipes with the
frequent vanilla, but won’t affect those using black pepper (Edmisten, 2022).

At its core, nimCSO leverages the metaprogramming ability of the Nim language (Rumpf, 2023)
to optimize itself at compile time, both in terms of speed and memory handling, to the specific
problem statement and dataset at hand based on a human-readable configuration file. As
demonstrated in the Methods and Performance section, nimCSO reaches the physical limits of
the hardware (L1 cache latency) and can outperform an efficient native Python implementation
over 100 times in terms of speed and 50 times in terms of memory usage (not counting the
interpreter), while also outperforming the NumPy (Harris et al., 2020) based implementation
37 and 17 times, respectively, when checking a candidate solution.

nimCSO is designed to be both (1) a user-ready tool, implementing two efficient brute-force
approaches (for handling up to 25 dimensions), a custom search algorithm (for up to 40
dimensions), and a genetic algorithm (for any dimensionality), and (2) a scaffold for building
even more elaborate methods in the future, including heuristics going beyond data availability.
All configuration is done with a simple human-readable YAML file and plain text data files, making
it easy to modify the search method and its parameters with no knowledge of programming
and only basic command line skills.

Statement of Need
nimCSO is an interdisciplinary tool applicable to any field where data is composed of a large
number of independent components and their interaction is of interest in a modeling effort,
ranging from economics where factor selection affects performance of analytical (Fan et al.,

Krajewski et al. (2024). nimCSO: A Nim package for Compositional Space Optimization. Journal of Open Source Software, 9(103), 6731.
https://doi.org/10.21105/joss.06731.

1

https://orcid.org/0000-0002-2266-0099
https://orcid.org/0000-0001-9427-4499
https://orcid.org/0000-0001-7256-2123
https://orcid.org/0000-0002-7022-3387
https://orcid.org/0000-0003-3346-3696
https://ror.org/04p491231
https://ror.org/04p491231
https://doi.org/10.21105/joss.06731
https://github.com/openjournals/joss-reviews/issues/6731
https://github.com/amkrajewski/nimCSO
https://doi.org/10.5281/zenodo.13834423
https://rmeli.github.io
https://orcid.org/0000-0002-2845-3410
https://github.com/atzberg
https://github.com/Henrium
https://github.com/bdice
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06731


2013) and ML (Peng et al., 2021) models, through medicine where drug interactions can have
a significant impact on the treatment (Maher et al., 2014) (an escalating problem (Guthrie et
al., 2015)) and understanding of microbial interactions can help fight gastrointenstant problems
(Berg et al., 2022; Leeuwen et al., 2023), to materials science, where the composition and
processing history are critical to resulting properties. The latter has been the root motivation
for the development of nimCSO within the ULTERA Project (ultera.org) carried under the US
DOE ARPA-E ULTIMATE program, which aims to develop a new generation of ultra-high
temperature materials for aerospace applications, through generative machine learning models
(Debnath et al., 2021) driving thermodynamic modeling, alloy design, and manufacturing (Li
et al., 2024).

One of the most promising materials for such applications are the aforementioned CCMs
and their metal-focused subset of Refractory High Entropy Alloys (RHEAs) (Senkov et al.,
2018), which have rapidly grown since first proposed by Cantor et al. (2004) and Yeh et
al. (2004). Contrary to most of the traditional alloys, they contain many chemical elements
(typically 4-9) in similar proportions in the hope of thermodynamically stabilizing the material
by increasing its configurational entropy (Δ𝑆𝑐𝑜𝑛𝑓 = Σ𝑁

𝑖 𝑥𝑖 ln𝑥𝑖 for ideal mixing of 𝑁 elements
with fractions 𝑥𝑖), which encourages sampling from a large palette of chemical elements. At
the time of writing, the ULTERA Database is the largest collection of HEA data, containing
over 7,000 points manually extracted from 560 publications. It covers 37 chemical elements
resulting in extremely large compositional spaces (Krajewski et al., 2024); thus, it becomes
critical to answer questions like “Which combination of how many elements will unlock the
most expansive and simultaneously dense dataset?” which has 237 − 1 or 137 billion possible
solutions.

Another significant example of intended use is to perform similar optimizations over large
(many millions) datasets of quantum mechanics calculations spanning 93 chemical elements
and accessible through the OPTIMADE API (Evans et al., 2024).

Methods and Performance

Overview
As shown in Figure 1, nimCSO can be used as a user-tool based on human-readable configuration
and a data file containing data “elements” which can be any strings representing problem-specific
names of, e.g., spices, market stocks, drug names, or chemical systems. A single command
is used to recompile (nim c -f) and run (-r) problem (-d:configPath=config.yaml) with
nimCSO (src/nimcso) using one of several methods. Advanced users can also quickly customize
the provided methods with brief scripts using the nimCSO as a data-centric library.
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Figure 1: Schematic of core nimCSO data flow with a description of key methods. Metaprogramming is
used to compile the software optimized to the human-readable data and configuration files at hand.

Internally, nimCSO is built around storing the data and solutions in one of two ways. The first
is as bits inside an integer (uint64), which allows for the highest speed and lowest memory
consumption possible but is limited to 64 dimensions and does not allow for easy extension to
other use cases; thus, as of publication, it is used only in a particular bruteForceInt routine.
The second one, used in bruteForce, algorithmSearch, and geneticSearch, implements a
custom easily extensible ElSolution type containing heuristic value and BitArray payload,
which is defined at compile time based on the configuration file to minimize necessary over-
heads. As shown in Table 1, both encodings outperform typical native Python and NumPy
implementations, typically used in this application by the scientific community, which can be
found in benchmarks directory.

Table 1: Benchmarks of (1) the average time to evaluate how many datapoints would be lost if 5 selected
components were removed from a dataset with 2,150 data points spanning 37 components, averaged
over 10,000 runs, and (2) the size of the data structure representing the dataset. Values were obtained
by running scripts in benchmarks directory on Apple M2 Max CPU. Pre-processing time is excluded, as it
has negligible impact on larger, realistic problems.

Tool Object
Time per
Dataset

Time per Entry
(Relative)

Database Size
(Relative)

Python3.11 set 107.5 µs 50.0 ns (x1) 871.5 kB (x1)
NumPy1.26 array 36.4 µs 16.9 ns (x3.0) 79.7 kB (x10.9)
nimCSO0.6 BitArray 6.9 µs 3.2 ns (x15.6) 50.4 kB (x17.3)
nimCSO0.6 uint64 0.98 µs 0.456 ns (x110) 16.8 kB (x52)

Brute-Force Search
The brute-force search is a naïve method of evaluating all possibilities; however, its near-zero
overhead can make it the most efficient for small problems. In this implementation, all entries
in the power set of 𝑁 considered elements are represented as a range of integers from 0 to
2𝑁 −1, and used to initialize uint64/BitArrays on the fly. To minimize the memory footprint
of solutions, the algorithm only keeps track of the best solution for a given number of elements
present in the solution. Current implementations are limited to 64 elements, as it is not
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feasible beyond approximately 30 elements; however, the one based on BitArray could be
easily extended if needed.

Algorithm-Based Search
The algorithm implemented in the algorithmSearch routine, targeting high dimensional prob-
lems (20-50), iteratively expands and evaluates candidates from a priority queue (implemented
through an efficient binary heap (Williams, 1964)) while leveraging the fact that the number
of data points lost when removing elements A and B from the dataset has to be at least as
large as when removing either A or B alone to delay exploration of candidates until they can
contribute to the solution. Furthermore, to (1) avoid revisiting the same candidate without
keeping track of visited states and to (2) avoid exhaustive search by inhibiting the exploration
of unlikely candidates, the algorithm assumes that while searching for a given order of solution,
elements present in already expanded solutions will not improve those not yet expanded. This
effectively prunes candidate branches requiring two or more levels of backtracking, making the
algorithm computationally feasible in higher-dimensional problems at the cost of potentially
suboptimal results. In the authors’ tests over HEAs, this algorithm has generated correct
results (agreeing with an exhaustive bruteForce exploration), except for occasional differences
in the last explored solution, where almost all data was discarded, and a few remaining points
were highly independent.

Genetic Search
Beyond 50 components, the algorithm-based method will likely run out of memory on most
personal systems. The geneticSearch routine resolves this issue through an evolution strategy
to iteratively improve solutions based on custom mutate and crossover procedures. Both
are of uniform type (Goldberg, 1989) with additional constraint of Hamming weight (Knuth,
2009) preservation in order to preserve number of considered elements in parents and offspring.
In mutate this is achieved by using purely random bit swapping, rather than more common
flipping, as demonstrated in the Figure 2.

Figure 2: Schematic of mutate procedure where bits are swapping randomly, so that (1) bit can swap
itself, (2) bits can swap causing a flip, or (3) bits can swap with no effect.

Meanwhile, in crossover, this constraint is satisfied by passing overlapping bits directly, while
non-overlapping bits are shuffled and distributed at positions present in one of the parents, as
shown in Figure 3.

Figure 3: Schematic of uniform crossover procedure preserving Hamming weight implemented in nimCSO.

The above are applied iteratively, with best solutions carried to next generation, until the
solution converges or the maximum number of iterations is reached. Unlike the other methods,
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the present method is not limited by the number of components and lets user control both
time and memory requirements, either to make big problems feasible or to get a good-enough
solution quickly in small problems. However, it comes with no optimality guarantees.

Use Examples
The tool comes with two pre-defined example problems to demonstrate its use. The first one is
defined in the default config.yaml file and goes through the complete dataset of 2,150 data
points spanning 37 components in dataList.txt based on the ULTERA Dataset (Debnath et
al., 2021). It is intended to showcase algorithmSearch/-as and geneticSearch/-gs methods,
as brute-forcing would take around one day. The second one is defined in config_rhea.yaml

and uses the same dataset but a limited scope of components critical to RHEAs (Senkov et
al., 2018) and is intended to showcase bruteForce/-bf and bruteForceInt/-bfi methods.
With four simple commands (see Table 2), the user can compare the methods’ performance
and the solutions’ quality.

Table 2: Four example tasks alongside typical CPU time and memory usage on Apple M2 Max.

Task Definition (nim c -r -f -d:release ...) Time (s) Memory (MB)
-d:configPath=config.yaml src/nimcso -as 308s 488 MB
-d:configPath=config.yaml src/nimcso -gs 5.10s 3.2 MB
-d:configPath=config_rhea.yaml src/nimcso -as 0.073s 2.2 MB
-d:configPath=config_rhea.yaml src/nimcso -gs 0.426s 2.1 MB
-d:configPath=config_rhea.yaml src/nimcso -bf 3.726s 2.0 MB
-d:configPath=config_rhea.yaml src/nimcso -bfi 0.495s 2.0 MB

In case of issues, the help message can be accessed by running the tool with -h flag or by
refering to documentation at amkrajewski.github.io/nimCSO.
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