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Summary
servir-aces Agricultural Classification and Estimation Service (ACES) is a Python package
for generating training data using highly parallelized apache-beam and Google Earth Engine
(GEE) (Gorelick et al., 2017) workflows as well as for training various Machine Learning (ML)
and Deep Learning (DL) models for remote sensing Applications (Bhandari & Mayer, 2024;
Mayer et al., 2023).

Statement of Need
Despite robust platforms, specialized technical knowledge is required to set up and run
various Machine Learning (ML) and Deep Learning (DL) models, making it difficult for many
development practitioners, scientists, and domain experts to implement them. The servir-

aces Python package is designed to address this challenge by significantly lowering the barrier
for users to export training data and both train and run DL models using cloud-based technology
with their GEE workflows. Several examples are provided via a user friendly notebook to make
it easier for scientists to utilize this emerging field of DL.

With petabytes of data available via GEE, and integration of the TensorFlow (TF) platfrom,
models trained in TF can be easily loaded into GEE. This package provides functionalities for
1) data processing, 2) data loading from GEE, 3) feature extraction, 4) model training, and 5)
model inference. The combination of TF and GEE has enabled several large scale ML and
DL remote sensing applications, including Wetland Area Mapping (Bakkestuen et al., 2023),
Crop Type Mapping (Bakkestuen et al., 2023), Surface Water Mapping (Mayer et al., 2021),
and Urban Mapping (Parekh et al., 2021). However, these applications tend to be developed
ad-hoc without using a common package.

Several unified libraries like torchgeo (Stewart et al., 2022) and rastervision (Fishgold et al.,
2023) exists, but they are primarily targeted for PyTorch user community. Some efforts for GEE
& TensorFlow users, such as geemap (Wu, 2020), are mostly used for classical ML approaches
like Random Forest, while geospatial-ml has not been developed further since its inception.
Thus, there is a need for unified libraries to train DL models integrating the GEE & TensorFlow
user community.

servir-aces addresses this need by 1) Offering a streamlined application of commonly employed
architectures (CNN, DNN, and U-NET); 2) Allowing end-users to rapidly adjust a wide range
of model parameters for these common architectures, including activation functions, optimizers,
loss functions, early stopping, dropout rate, batch size, etc.; 3) More efficiently and effectively
connecting across the Google Cloud ecosystem, linking Google Cloud, improved methods of
parallelization via Apache beam, Vertex AI, TensorFlow, and Google Earth Engine; and 4)
Enabling broader development and incorporation of several methods through the package’s
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utility functions, such as providing a collated set of evaluation metrics for easier model
performance comparisons, a class for generating remote sensing features essential for the
scientific community, and utility functionality for Apache Beam and Earth Engine. Although
servir-aces was originally developed for agricultural-related applications, the library has been
further developed to work for any kind of DL image segmentation tasks.

servir-aces Audience
servir-aces is intended for development practitioners, researchers, scientists, software devel-
opers, and students who would like to utilize various freely available Earth Observation (EO)
data using cloud-based GEE and TF ecosystem to perform large scale ML/DL related remote
sensing applications.

We also provide several notebook examples to showcase the usage of the servir-aces. Here
we show how servir-aces can be used for crop-mapping related applications. Ideally, the
same process can be repeated for any image segmentation task.

servir-aces Functionality
The major high-level functionalities of the servir-aces packages are:

• Data loading and processing from GEE.
• Generation of training data for various ML and DL models.
• Training and evaluation of ML/DL Models.
• Inferences of the trained ML/DL models.
• Support for remote sensing feature extraction.
• Integration with Apache Beam for data processing and parallelization.

The key functionality of servir-aces is organized into several modules:

• data_processor: this module provides functionality for data input/output and prepro-
cessing for the image segmentation project.

• model_builder: this module provides functionality for creating and compiling various
Neural Network Models, including DNN, CNN, U-Net.

• model_trainer: this module provides functionality for training, buidling, compiling, and
running specified deep learning models.

• metrics: this module provides a host of statstical metrics, standard within the field, for
evaluating model performance and provide utility functions for plotting and visualizing
model metrics during training.

• ee_utils: this module for providing utility functions to handle GEE API information and
authentication requests.

• remote_sensing: this module provides various static methods to compute remote sensing
indices for analysis.
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