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Summary
A copula method can be used to describe the dependency structure between several random
variables. Copula methods are used widely in various research fields across different disciplines,
ranging from finance to the bio-geophysical sciences (Dißmann et al., 2013; Klein et al.,
2020; Mitskopoulos et al., 2022). While some other multivariate distributions, for instance a
multivariate normal distribution, allow for a highly symmetric dependency structure with the
same univariate and multivariate marginal distributions, copulas can model the joint distribution
of multiple random variables separately from their marginal distribution (Czado & Nagler,
2021; Sklar, 1959).

Once a copula distribution has been modelled, they allow for random samples of the data to
be generated, as well as conditional samples. For example, if a copula has been fit between
people’s height and weight, this copula can create random correlated samples of both variables
as well as conditional samples, e.g., samples of weight given a specific height.

Although copulas are an excellent tool to model dependencies in bivariate data, data with two
variables, there are only a limited number of copulas capable of modelling larger multivariate
datasets, for example, the Gaussian and Student-t copula. However, when modelling the
dependencies between a large number of different variables, a more flexible multivariate
modelling tool may be required that does not assume a single copula to capture all the
individual dependencies. To this end, vine copulas have been proposed as a method to
construct a multivariate model with the use of bivariate copulas as building blocks (Aas et al.,
2009; Bedford & Cooke, 2001, 2002; Joe, 1997).

In the previous example related to height and weight, a vine copula could be used to also model
age in relation to height and weight. Like bivariate copulas, vine copulas allow the user to
generate random and conditional samples (Cooke et al., 2015). However, to draw conditional
samples from a vine copula for a specific variable, the vine copula has to be structured in such
a way that the order in which the samples are generated draws the variable of interest last,
i.e. the sample is conditioned on the preceding samples of other variables. For example, if one
wants to generate a conditional sample of height, the samples of age and weight have to be
provided first. Additionally, while it is more common to use copulas for continuous data, such
as weight and height, methods have been developed to also allow for discrete data, such as
age, to be modelled (Mitskopoulos et al., 2022).

VineCopulas is a Python package that is able to fit and simulate both bivariate and vine
copulas. This package allows for both discrete as well as continuous input data, and can draw
conditional samples for any variables of interest with the use of different vine structures (see
Figure 1).
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Figure 1: A schematic representation of VineCopulas functionalities, where the lettering refers to the
different arrows (Python functions). A) Samples from Table 1 - data, consisting of both continuous
and discrete variables (plotted in blue) are transformed into pseudo-observations using their marginal
distributions (shown in green). B) A vine copula is fit to the transformed data. Here, the first tree has
nodes containing the variables and edges denoting the bivariate dependencies. The edges in the second
tree denote the dependency between all variables. C) Using the fitted vine copula, random samples are
generated. D) As not every vine copula structure is suitable to generate conditional samples of every
variable, due to its inherent sampling order, a vine copula can also be fit conditionally. Here, a vine
copula is fit conditionally for variable 1. E) The conditionally fit vine copula is used to draw conditional
samples of variable 1 given specific values of variables 2 and 3.

Statement of need
The programming language R is widely known as the most advanced statistical programming
language and hence has many well-developed packages for copulas, such as copula (Hofert
et al., 2023), VineCopula (Nagler et al., 2023), and CDVineCopulaConditional (Bevacqua,
2017). However, with the open source programming language Python gaining more popularity
for statistical programming, there is an increasing interest in Python-based copula packages.
Therefore, we have developed the package VineCopulas, a pure Python implementation for
(vine) copulas.

VineCopulas integrates many of the standard copula package features, including fitting,
Probability Density Function (PDFs), and random sample generation for bivariate and vine
copulas. This package can also fit the best marginal distributions of the individual variables
based on the univariate distributions available in the statistical Python package SciPy (Virtanen
et al., 2020). Furthermore, the VineCopulas can compute cumulative distribution functions
(CDFs) of bivariate copulas. In addition, the package also enables the user to generate
conditional samples, fit vine structures to facilitate specific conditional probabilities and fit as
well as simulate discrete data, all of which are unique to have in a single package.

While there are two well-used Python copula packages, copulas (DataCebo, n.d.), and
pyvinecopulib (Nagler & Vatter, 2023), neither of these packages includes the above-
mentioned unique features. Furthermore, copulas is mostly suitable for bivariate copulas, and
has limited vine copula capabilities, while pyvinecopulib is a C++ library with a Python
interface, meaning that it is not fully Python-based, and therefore less adaptable for a Python
user. Therefore, VineCopulas is targeted towards data analysts, researchers and modellers in
various fields, who are Python users or require functionality specifically for discrete data and
conditional sampling.
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VineCopulas is currently being used in a study on multi-hazards to model the dependencies
between different natural hazard intensities. For this study, the ability to generate conditional
samples is required to evaluate possible magnitudes of one natural hazard given multiple others
e.g., levels of extreme precipitation given specific extreme wind speeds and relative humidity.
The capability to also simulate discrete data may be useful for hazards with intensity measures
of a discrete nature, such as the Volcanic Explosivity Index (VEI). Applications of this type,
are growing in the field of compound and multi-hazard risk research (Bevacqua et al., 2017;
Eilander et al., 2023). VineCopulas will allow Python users to continue this research at a
higher dimensionality, showing the clear need for this package.
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