
Catalyst: a Python JIT compiler for auto-differentiable
hybrid quantum programs

David Ittah 1*, Ali Asadi1*, Erick Ochoa Lopez1*, Sergei Mironov1*, Samuel
Banning1*, Romain Moyard 1*, Mai Jacob Peng 1*, and Josh Izaac 1¶

1 Xanadu, Toronto, ON, M5G 2C8, Canada ¶ Corresponding author * These authors contributed equally.
DOI: 10.21105/joss.06720

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @pmcao
• @otbrown

Submitted: 01 November 2023
Published: 09 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Catalyst is a software package for capturing Python-based hybrid quantum programs (that
is, programs that contain both quantum and classical instructions), and just-in-time (JIT)
compiling them down to an MLIR and LLVM representation and generating binary code.
As a result, Catalyst enables the ability to rapidly prototype quantum algorithms in Python
alongside efficient compilation, optimization, and execution of the program on classical and
quantum accelerators. In addition, Catalyst allows for advanced quantum programming features
essential for fault-tolerant hardware support and advanced algorithm design, such as mid-circuit
measurement with arbitrary post-processing, support for classical control flow in and around
quantum algorithms, built-in measurement statistics, and hardware-compatible automatic
differentiation (AD).

Statement of need
The rapid development and availability of quantum software and hardware has had significant
influence on quantum algorithm development and general quantum computing research.
Through direct access to full-featured quantum programming SDKs (Bergholm et al., 2018;
Google Inc., 2018; IBM Corporation, 2016b), high-performance simulators (Bergholm et al.,
2018; NVIDIA cuQuantum team, 2022), and near-term noisy hardware (Amazon Web Services,
2020; IBM Corporation, 2016a; Madsen et al., 2022), researchers have new tools available
to prototype, execute, analyze, and iterate during algorithm development. Notably, this has
resulted in the development and exploration of new categories of quantum algorithms that
take advantage of the strong integration with advanced classical tooling; an example being
auto-differentiation and variational quantum algorithms (Delgado et al., 2021; Farhi et al.,
2014; McClean et al., 2016).

However, as our hardware capabilities scale, it is becoming clear that we cannot separate
classical and quantum parts of the program; classical processing remains essential for processing
quantum input and output, as well as mid-circuit processing that must be performant enough
to keep up with the quantum execution. Furthermore, we must support this while retaining
the ability to rapidly prototype, integrate with classical tooling and accelerators, and provide
efficient optimization and compilation of both quantum and classical instructions.

One of the core goals of Catalyst is to provide a unified representation for hybrid programs with
which to drive optimization, device compilation, automatic differentiation, and many other
types of transformations in a scalable way. Moreover, Catalyst is being developed to support
next-generation quantum programming paradigms, such as dynamic circuit generation with
classical control flow, real-time measurement feedback, qubit reuse, and dynamic quantum
memory management. Most importantly, Catalyst provides a way to transform large scale user

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

1

https://orcid.org/0000-0003-0975-6448
https://orcid.org/0000-0003-0837-6451
https://orcid.org/0000-0002-2377-264X
https://orcid.org/0000-0003-2640-0734
https://doi.org/10.21105/joss.06720
https://github.com/openjournals/joss-reviews/issues/6720
https://github.com/PennyLaneAI/catalyst
https://doi.org/10.5281/zenodo.12696447
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/pmcao
https://github.com/otbrown
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06720

workflows from Python into low-level binary code for accelerated execution in heterogeneous
environments.

Catalyst is divided into three core components: a frontend that captures and lowers hybrid
Python programs, a compiler that applies quantum and classical optimizations and trans-
formations, and a runtime that allows the compiled binary to call into quantum devices for
execution.

Frontend
The Catalyst frontend, built in Python and C++, directly integrates with both PennyLane
(Bergholm et al., 2018), a Python framework for differentiable quantum programming, and
JAX (Bradbury et al., 2018), a Python framework for accelerated auto-differentiation, to
capture hybrid quantum programs. As a result, by decorating hybrid programs with the
@qjit decorator, the Catalyst frontend is able to capture and ahead-of-time or just-in-time
compile (from within Python) the quantum and classical instructions provided by PennyLane
and JAX. In addition, Catalyst provides high-level functions for compact and dynamic circuit
representation (for_loop, cond, while_loop, measure) as well as auto-differentiation (grad,
jacobian, vjp, jvp). Preliminary support for AutoGraph (Moldovan et al., 2018) also allows
users to write hybrid quantum programs using native Python control flow; all branches of the
computation will be represented in the captured hybrid program.

Compiler
Building on the LLVM (Lattner & Adve, 2004) and MLIR (Lattner et al., 2021) compiler
frameworks, and the QIR project (QIR Alliance, 2021), compilation is then performed on the
MLIR-based representation for hybrid quantum programs defined by Catalyst. The compiler
invokes a sequence of transformations that lowers the hybrid program to a lower level of
abstraction, outputting LLVM IR with QIR syntax. In addition to the lowering process, various
transformations take place, including quantum optimizations (adjoint cancellation, operator
fusion), classical optimizations (code elimination), and automatic differentiation. In the
latter case, classical auto-differentiation is provided via the Enzyme (Moses & Churavy, 2020)
framework, while hardware-compatible quantum gradient methods (such as the parameter-shift
rule (Schuld et al., 2019; Wierichs et al., 2022)) are provided as Catalyst compiler transforms.

Runtime
The Catalyst runtime is designed to enable Catalyst’s highly dynamic execution model. As
such, it generally assumes direct communication between a quantum device and its classical
controller or host, although it also supports more restrictive execution models. Execution of
the user program proceeds on the host’s native architecture, while the runtime provides an
abstract communication API for quantum devices that the user program is free to invoke
at any time during its execution. Currently, Catalyst provides runtime integration for the
high-performance PennyLane Lightning suite of simulators (PennyLane Lightning, 2023), as
well as an OpenQASM3 pipeline with Amazon Braket simulator and hardware support.

Examples
The following example highlights the capabilities of the Catalyst frontend, enabling scalable
and high-performance quantum computing from a feature-rich interactive Python environment.

First, we utilize Catalyst to just-in-time compile a complex function involving a mix of classical
and quantum processing. Note that, through the AutoGraph feature, native Python control
flow is automatically captured, allowing both branches to be represented in the compiled
program.

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

2

https://doi.org/10.21105/joss.06720

import pennylane as qml

from catalyst import qjit, measure

from jax import numpy as jnp

dev = qml.device("lightning.qubit", wires=2)

@qjit(autograph=True)

def hybrid_function(x):

@qml.qnode(dev, diff_method="parameter-shift")

def circuit(x):

qml.RX(x, wires=0)

qml.RY(x ** 2, wires=1)

qml.CNOT(wires=[0, 1])

for i in range(0, 10):

m = measure(wires=0)

if m == 1:

qml.CRX(x * jnp.exp(- x ** 2), wires=[0, 1])

x = x * 0.2

return qml.expval(qml.PauliZ(0))

return jnp.sin(circuit(x)) ** 2

>>> hybrid_function(0.543)

array(0.70807342)

We can also consider an example that includes a classical optimization loop, such as optimizing
a quantum computer to find the ground state energy of a molecule:

import pennylane as qml

from catalyst import grad, for_loop, qjit

import jaxopt

from jax import numpy as jnp

mol = qml.data.load("qchem", molname="H3+")[0]

n_qubits = len(mol.hamiltonian.wires)

dev = qml.device("lightning.qubit", wires=n_qubits)

@qjit

@qml.qnode(dev)

def cost(params):

qml.BasisState(jnp.array(mol.hf_state), wires=range(n_qubits))

qml.DoubleExcitation(params[0], wires=[0, 1, 2, 3])

qml.DoubleExcitation(params[1], wires=[0, 1, 4, 5])

return qml.expval(mol.hamiltonian)

@qjit

def optimization(params):

loss = lambda x: (cost(x), grad(cost)(x))

set up optimizer and define optimization step

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

3

https://doi.org/10.21105/joss.06720

opt = jaxopt.GradientDescent(loss, stepsize=0.3, value_and_grad=True)

update_step = lambda step, args: tuple(opt.update(*args))

gradient descent parameter update loop using jit-compatible for-loop

state = opt.init_state(params)

(params, _) = for_loop(0, 10, step=1)(update_step)((params, state))

return params

>>> params = jnp.array([0.54, 0.3154])

>>> final_params = optimization(params)

>>> cost(final_params) # optimized energy of H3+

-1.2621179827928877

>>> mol.vqe_energy # expected energy of H3+

-1.2613407428534986

Here, we are using the JAXopt gradient optimization library (Blondel et al., 2022) alongside
the built-in auto-differentiation capabilities of Catalyst, to compile the entire optimization
workflow. For this small toy example on 6 qubits, we can time the execution after compilation
on the same system, as a non-rigorous demonstration of the advantage of performing this for
loop outside of Python:

>>> %timeit optimization(params)

599 ms ± 96 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Comparing this to a non-compiled workflow, where the @qjit decorator has been removed:

@qml.qnode(dev)

def no_qjit_cost(params):

qml.BasisState(jnp.array(mol.hf_state), wires=range(n_qubits))

qml.DoubleExcitation(params[0], wires=[0, 1, 2, 3])

qml.DoubleExcitation(params[1], wires=[0, 1, 4, 5])

return qml.expval(mol.hamiltonian)

def no_qjit_optimization(params):

set up optimizer

opt = jaxopt.GradientDescent(no_qjit_cost, stepsize=0.3, jit=False)

state = opt.init_state(params)

for i in range(15):

(params, state) = opt.update(params, state)

return params

>>> %timeit no_qjit_optimization(params)

3.73 s ± 522 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

For more code examples, please see the Catalyst documentation1.

Installation and contribution

The Catalyst source code is available under the Apache 2.0 license on GitHub2, and binaries are
available for pip installation on Linux and macOS3. Contributions to Catalyst — via feedback,
issues, or pull requests on GitHub — are welcomed. Additional Catalyst documentation and
tutorials are available on our online documentation4.

1https://docs.pennylane.ai/projects/catalyst
2https://github.com/PennyLaneAI/catalyst
3https://pypi.org/project/pennylane-catalyst
4https://docs.pennylane.ai/projects/catalyst

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

4

https://doi.org/10.21105/joss.06720

Discussion and future work
The Catalyst hybrid compilation stack as presented here provides an end-to-end infrastructure to
explore next-generation dynamic hybrid quantum-classical algorithms, by allowing for workflows
that support compressed representation of large, highly structured quantum algorithms, as well
as mid-circuit measurements with arbitrary classical processing and feedforward.

The Catalyst software stack will continue to be developed alongside research, algorith, and
hardware needs, with potential future work including support for quantum hardware control
systems, building out a library of MLIR quantum compilation passes for optimizing quantum
circuits (without unrolling classical control structure), and explorations of dynamic quantum
error mitigation and proof-of-concept error correction experiments.

Quantum software is driving many new results and ideas in quantum computing research,
and the PennyLane framework has already been used in a number of scientific publications
(Delgado et al., 2021; Wierichs et al., 2022) and educational materials (Xanadu, 2018). By
enabling researchers to scale up their ideas and algorithms, and execute on both near-term
and future quantum hardware, the software presented here will help drive future research in
quantum computing.

Acknowledgements
We acknowledge contributions from Lee J O’Riordan, Nathan Killoran, and Olivia Di Matteo
during the genesis of this project.

References
Amazon Web Services. (2020). Amazon Braket. https://aws.amazon.com/braket/

Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso-
Linaje, G., AkashNarayanan, B., Asadi, A., & others. (2018). Pennylane: Automatic
differentiation of hybrid quantum-classical computations. arXiv Preprint arXiv:1811.04968.
https://doi.org/10.48550/arXiv.1811.04968

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-López, F., Pedregosa, F.,
& Vert, J.-P. (2022). Efficient and modular implicit differentiation. Advances in Neural
Information Processing Systems, 35, 5230–5242.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Delgado, A., Arrazola, J. M., Jahangiri, S., Niu, Z., Izaac, J., Roberts, C., & Killoran, N.
(2021). Variational quantum algorithm for molecular geometry optimization. Physical
Review A, 104(5), 052402. https://doi.org/10.1103/physreva.104.052402

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization
algorithm. arXiv Preprint arXiv:1411.4028. https://doi.org/10.48550/arXiv.1411.4028

Google Inc. (2018). Cirq. https://cirq.readthedocs.io/en/latest/

IBM Corporation. (2016a). IBM Quantum Experience. https://quantumexperience.ng.bluemix.
net/

IBM Corporation. (2016b). Qiskit. https://qiskit.org/

Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program analysis
and transformation. 2004 IEEE/ACM International Symposium on Code Generation and

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

5

https://aws.amazon.com/braket/
https://doi.org/10.48550/arXiv.1811.04968
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1103/physreva.104.052402
https://doi.org/10.48550/arXiv.1411.4028
https://cirq.readthedocs.io/en/latest/
https://quantumexperience.ng.bluemix.net/
https://quantumexperience.ng.bluemix.net/
https://qiskit.org/
https://doi.org/10.21105/joss.06720

Optimization (CGO), 75–88. https://doi.org/10.1109/CGO.2004.1281665

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle, R.,
Shpeisman, T., Vasilache, N., & Zinenko, O. (2021). MLIR: Scaling compiler infrastructure
for domain specific computation. 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2–14. https://doi.org/10.1109/CGO51591.2021.
9370308

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F., Miatto,
F. M., Neuhaus, L., Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam, S. W., Vaidya,
V. D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., & Lavoie, J. (2022). Quantum
computational advantage with a programmable photonic processor. Nature, 606(7912),
75–81. https://doi.org/10.1038/s41586-022-04725-x

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The theory of
variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2), 023023.
https://doi.org/10.1088/1367-2630/18/2/023023

Moldovan, D., Decker, J. M., Wang, F., Johnson, A. A., Lee, B. K., Nado, Z., Sculley,
D., Rompf, T., & Wiltschko, A. B. (2018). AutoGraph: Imperative-style coding with
graph-based performance. arXiv Preprint arXiv:1810.08061. https://doi.org/10.48550/
arXiv.1810.08061

Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, & H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp.
12472–12485). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/
9332c513ef44b682e9347822c2e457ac-Paper.pdf

NVIDIA cuQuantum team. (2022). NVIDIA/cuQuantum: cuQuantum v22.03.0 (Version
v22.03.0). Zenodo. https://doi.org/10.5281/zenodo.6385575

PennyLane Lightning: Fast state-vector simulators written in C++ (Version 0.33.1). (2023).
http://github.com/pennylane/pennylane-lightning

QIR Alliance. (2021). QIR Specification. https://github.com/qir-alliance/qir-spec

Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic
gradients on quantum hardware. Physical Review A, 99(3), 032331. https://doi.org/10.
1103/physreva.99.032331

Wierichs, D., Izaac, J., Wang, C., & Lin, C. Y.-Y. (2022). General parameter-shift rules for
quantum gradients. Quantum, 6, 677. https://doi.org/10.22331/q-2022-03-30-677

Xanadu. (2018). PennyLane Demos. https://pennylane.ai/qml/demonstrations

Ittah et al. (2024). Catalyst: a Python JIT compiler for auto-differentiable hybrid quantum programs. Journal of Open Source Software, 9(99),
6720. https://doi.org/10.21105/joss.06720.

6

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.48550/arXiv.1810.08061
https://doi.org/10.48550/arXiv.1810.08061
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.5281/zenodo.6385575
http://github.com/pennylane/pennylane-lightning
https://github.com/qir-alliance/qir-spec
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.22331/q-2022-03-30-677
https://pennylane.ai/qml/demonstrations
https://doi.org/10.21105/joss.06720

	Summary
	Statement of need
	Frontend
	Compiler
	Runtime

	Examples
	Installation and contribution
	Discussion and future work
	Acknowledgements
	References

