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Summary
MultiPrecisionArrays.jl (Kelley, 2024b) provides data structures and solvers for several variations
of iterative refinement (IR). IR can speed up LU matrix factorization for solving linear systems
of equations by factoring a low precision copy of the matrix and using that low precision
factorization in an iteration to solve the system. For example, if high precision is double and
low precision is single, then the factorization time is cut in half. The additional storage cost is
the low precision copy, so IR is a time vs storage trade off. IR has a long history, and a good
account of the classical theory is in Higham (1996).

Statement of need
The solution of linear systems of equations is a ubiquitous task in computational science
and engineering. A common method for dense systems is Gaussian elimination done via LU
factorization, (Higham, 1996). Iterative refinement is a way to reduce the factorization time
at the cost of additional storage. MultiPrecisionArrays.jl enables IR with a simple interface in
Julia (Bezanson et al., 2017) with an IR factorization object that one uses in the same way
as the one for LU. The package offers several variants of IR, both classical (Higham, 1996;
Wilkinson, 1948) and some from the recent literature (Amestoy et al., 2024; Carson & Higham,
2017).

Algorithm
This package will make solving dense systems of linear equations faster by using the LU
factorization and IR. While other factorizations can be used in IR, the package is limited to
LU for now. A very generic description of this for solving a linear system 𝐴𝑥 = 𝑏 in a high
(working) precision is

IR(A, b)

• 𝑥 = 0

• 𝑟 = 𝑏

• Factor 𝐴 = 𝐿𝑈 in a lower precision

• While ‖𝑟‖ is too large

– 𝑑 = (𝐿𝑈)−1𝑟

– 𝑥 = 𝑥 + 𝑑

– 𝑟 = 𝑏 − 𝐴𝑥

• end
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• end

In Julia, a code to do this would solve the linear system 𝐴𝑥 = 𝑏 in the working precision, say
double, by using a factorization in a lower (factorization) precision, say single, within a residual
correction iteration. This means that one would need to allocate storage for a copy of 𝐴 in
the factorization precision and factor that copy.

The multiprecision factorization mplu makes the low precision copy of the matrix, factors that
copy, and allocates some storage for the iteration. The original matrix and the low precision
factorization are stored in a factorization object that you can use with \.

IR is a perfect example of a storage/time trade off. To solve a linear system 𝐴𝑥 = 𝑏 in 𝑅𝑁

with IR, one incurs the storage penalty of making a low precision copy of 𝐴 and reaps the
benefit of only having to factor the low precision copy.

Installation
The standard way to install a package is to type import.Pkg; Pkg.add("MultiPrecisionArrays")

at the Julia prompt. One can run the unit tests with Pkg.test("MultiPrecisionArrays").
After installation, type using MultiPrecisionArrays when you want to use the functions in
the package.

There are only two direct dependencies outside of the Julia standard libraries. The factorization
in half precision (Float16) uses OhMyThreads.jl. The GMRES and Bi-CGSTAB solvers for
Krylov-IR methods are taken from SIAMFANL.jl (Kelley, 2022b).

A Few Subtleties

Within the algorithm one has to determine what the line 𝑑 = (𝐿𝑈)−1𝑟 means. Does one
cast 𝑟 into the lower precision before the solve or not? If one casts 𝑟 into the lower precision,
then the solve is done entirely in the factorization precision. If, however, 𝑟 remains in the
working precision, then the LU factors are promoted to the working precision on the fly. This
makes little difference if TW is double and TF is single and there is a modest performance
benefit to downcasting 𝑟 into single. Therefore that is the default behavior in that case. If
TF is half precision, Float16, then it is best to do the interprecision transfers on the fly and
if one is using one of the Krylov-IR algorithms (Amestoy et al., 2024) then one must do the
interprecision transfers on the fly and not downcast 𝑟.

There are two half precision (16 bit) formats. Julia has native support for IEEE 16 bit floats
(Float16). A second format (BFloat16) has a larger exponent field and a smaller significand
(mantissa), thereby trading precision for range. In fact, the exponent field in BFloat is the
same size (8 bits) as that for single precision (Float32). The significand, however, is only 8
bits. Compare this to the size of the exponent fields for Float16 (11 bits) and single (24 bits).
The size of the significand means that you can get in real trouble with half precision in either
format and that IR is more likely to fail to converge. GMRES-IR can mitigate the convergence
problems (Amestoy et al., 2024) by using the low-precision solve as a preconditioner. We
support both GMRES (Saad & Schultz, 1986) and BiCGSTAB (van der Vorst, 1992) as solvers
for Krylov-IR methods. One should also know that LAPACK and the BLAS do not yet support
half precision arrays, so working in Float16 will be slower than using Float64.

The classic algorithm from Wilkinson (1948) and its recent extension from Carson & Higham
(2017) evaluate the residual in a higher precision that the working precision. This can give
improved accuracy for ill-conditioned problems at a cost of the interprecision transfers in the
residual computation. This needs to be implemented with some care and Demmel et al. (2006)
has an excellent account of the details.
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MultiPrecisionArrays.jl provides infrastructure to manage these things and we refer the reader
to Kelley (2024b) for the details.

Projects using MultiPrecisionArrays.jl.
This package was motivated by the use of low-precision factorizations in Newton’s method
(Kelley, 2022a, 2022c) and the interface between a preliminary version of this package and
the solvers from Kelley (2022c) and Kelley (2022b) was reported in Kelley (2023). That
paper used a three precision form of IR (TF=half, TW=single, nonlinear residual computed
in double) and required direct use of multiprecision constructors that we do not export in
MultiPrecisionArrays.jl. We will fully support the application to nonlinear solvers in a future
version. We give a detailed account of interprecision transfers in Kelley (2024a) and use
MultiPrecisionArrays.jl to generate the table in that paper.

Other Julia Packages for IR
The package IterativeRefinement.jl is an implementation of the IR method from Dongarra et
al. (1983). It has not been updated in four years.

The unregistered package Itref.jl implements IR and the GMRES-IR method from Amestoy et
al. (2024) and was used to obtain the numerical results in that paper. It does not provide the
data structures for preallocation that we do and does not seem to have been updated lately.
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