
The ARC-OPT Library for Whole-Body Control of
Robotic Systems
Dennis Mronga 1 and Frank Kirchner 1,2

1 German Research Center for Artificial Intelligence (DFKI), Bremen, Germany 2 University of Bremen,
Bremen, Germany

DOI: 10.21105/joss.06696

Software
• Review
• Repository
• Archive

Editor: Adi Singh
Reviewers:

• @mhubii
• @sea-bass
• @JHartzer

Submitted: 07 March 2024
Published: 30 December 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
ARC-OPT (Adaptive Robot Control using OPTimization) is a C++ library for Whole-Body
Control (WBC) (Sentis & Khatib, 2006) of complex robotic systems, such as humanoids,
quadrupedal robots, or mobile manipulators.

In general, WBC describes a robot control problem in terms of costs and constraints of a
quadratic program (QP). The cost function thereby minimizes the residuals of multiple feedback
controllers, each dedicated to a specific robot task, along with further objectives. In each
control cycle, the QP is solved and the solution, which should fulfill all objectives if possible, is
sent to the robot’s actuators. WBC is a reactive control approach, which targets redundant
robots and is able to control multiple tasks simultaneously, like, e.g., grasping and balancing
on a humanoid robot.

Statement of need
ARC-OPT supports the software developer in designing such Whole-Body Controllers by
providing configuration options for different pre-defined WBC problems. Today, the method-
ology of WBC is well understood and several mature frameworks exist. Task Space Inverse
Dynamics (TSID) (Prete et al., 2016) implements a control algorithm for legged robots on
acceleration level, while the approach presented in Posa et al. (2016) operates on torque level.
In Smits et al. (2009) a generalized velocity-IK framework is implemented, which is, however,
tightly coupled to the Orocos project. Similarly, Pink (Caron et al., 2024) is a weighted
task-based framework for differential inverse kinematics implemented in Python. The IHMC
Whole-Body Controller has been developed for the ATLAS robot (Feng et al., 2015), providing
control algorithms for walking and manipulation based on QPs. Drake (Tedrake & Drake
Development Team, 2019) is a collection of libraries for model-based design and control of
complex robots. It provides interfaces to several open-source and commercial solvers, including
linear least-squares, quadratic programming, and non-linear programming. Finally, ControlIt!
(University of Texas at Austin, 2021) is a middleware built around the whole-body operational
space control algorithm first introduced by Sentis & Khatib (2006).

In contrast to the existing libraries, ARC-OPT implements unified interfaces for different WBC
problems on velocity, acceleration and torque level, as well as options to benchmark different
QP solvers and rigid body dynamics libraries on these problems. Furthermore, it provides a
novel WBC approach for robots with parallel kinematic loops, which is described in Mronga et
al. (2022).

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

1

https://orcid.org/0000-0002-8457-1278
https://orcid.org/0000-0002-1713-9784
https://doi.org/10.21105/joss.06696
https://github.com/openjournals/joss-reviews/issues/6696
https://github.com/ARC-OPT/wbc
https://doi.org/10.5281/zenodo.14353780
https://www.linkedin.com/in/adisin/
https://orcid.org/0000-0002-6382-8441
https://github.com/mhubii
https://github.com/sea-bass
https://github.com/JHartzer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06696


Description

Figure 1: ARC-OPT library overview

Figure 1 shows an overview of the ARC-OPT library. ARC-OPT separates the implementation
of controllers, robot model, solver, and scene, which allows a modular composition of the
WBC problem:

• A controller implements a function in the robot’s task space, e.g., for maintaining balance,
avoiding an obstacle, or following a trajectory. ARC-OPT provides various controllers in
joint or Cartesian space, like PD-Controllers, or repulsive potential fields.

• The scene sets up the QP, where the costs can be configured at runtime, and the
constraints are specific for the implemented scene. Different scenes are currently
implemented on velocity and acceleration level.

• The robot model computes the kinematic and dynamic information that the scene
requires to set up the QP, like Jacobians, mass-inertia matrices, and gravity terms.
ARC-OPT implements multiple robot models based on Pinocchio (Carpentier et al.,
2019), RBDL (Felis, 2016), and Hyrodyn (Kumar et al., 2020).

• The solver solves the QP and generates the required control input for the robot joints.
ARC-OPT provides various QP solvers based on open-source implementations, e.g.,
qpOASES (Ferreau et al., 2014), eiquadprog (Buondonno, 2021), proxQP (Bambade et
al., 2022), and qpSwift (Pandala et al., 2019).

Apart from this, ARC-OPT implements various concepts typically used in WBC. These include
floating base dynamics and friction cone constraints, which are required for walking robots.
Furthermore, task weighting and hierarchies can be used to prioritize one task over another.
The software provides tutorials explaining most of these concepts.

Example
This example shows how to set up an acceleration-level WBC. Here, the tasks are formulated in
the cost function. Equations of motion, rigid contacts and joint torque limits are implemented
as constraints. The decision variables are the joint accelerations q̈, joint torques 𝜏 and contact
wrenches f. Mathematically, this can be expressed by the following QP:

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

2

https://doi.org/10.21105/joss.06696


min
q̈,𝜏,f

‖∑𝑖 w𝑇
𝑖 (J𝑖 ̈q + ̇J𝑖q̇ − v̇𝑑,𝑖) ‖2

s.t. Hq̈ + h = B𝜏 + J𝑐f
J𝑐q̈ = − ̇J𝑐q̇
𝜏𝑚 ≤ 𝜏 ≤ 𝜏𝑀

where w𝑖 are the task weights for the i-th task, J𝑖 is the respective robot Jacobian, v̇𝑑,𝑖 the
desired task space acceleration, q, q̇, q̈ the joint positions, velocities, and accelerations, H the
mass-inertia matrix, h the vector of gravity and Coriolis forces, 𝜏 the robot joint torques, B
the control input matrix, f the contact wrenches, J𝑐 the contact Jacobian, and 𝜏𝑚, 𝜏𝑀 the
joint torque limits. To implement a simple Cartesian position controller for, e.g., controlling
the end effector of a robot manipulator, the following PD-controller can be used:

v̇𝑑 = v̇𝑟 + K𝑑(v𝑟 − v) + K𝑝(x𝑟 − x)

where K𝑝,K𝑑 are gain matrices, x,v the end effector position and velocity, v̇𝑟,v𝑟,x𝑟 the
reference acceleration, velocity, and position. Figure 2 shows a C++ code snippet from
ARC-OPT, which implements the above QP on a KUKA iiwa robot arm (no contacts, fixed
base robot). In the code example, at first the robot model is set up using the URDF file, then
the QP-solver (qpOASES), the WBC scene and a Cartesian controller are configured. In the
subsequent control loop, a circular trajectory is tracked in Cartesian space. The full example
can be found in the ARC-OPT tutorials1. Figure 3 shows a visualization of the resulting robot
motion. While this example only implements simple Cartesian control, more complex problems
with multiple objectives/controllers can easily be composed, such as tracking the leg positions
and center of mass on a walking robot.

Figure 2: Minimal code example for Cartesian position control on a KUKA iiwa robot

1https://github.com/ARC-OPT/wbc/blob/master/tutorials/kuka_iiwa/cart_pos_ctrl_dynamic.cpp

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

3

https://github.com/ARC-OPT/wbc/blob/master/tutorials/kuka_iiwa/cart_pos_ctrl_dynamic.cpp
https://doi.org/10.21105/joss.06696


Figure 3: Screenshots of the resulting robot motion in the example

ROS 2 integration and Python Bindings
The WBC library is integrated into ROS 2 using the ros2_control framework. Each WBC
controller is represented by a separate ROS 2 controller. Another ROS 2 controller (whole-body
controller) integrates the robot model, the WBC scene and the solver. In each control step,
the whole-body controller updates the robot model, sets up the costs and constraints of the
QP, solves it and sends the solution to the hardware interfaces. Typical control rates for WBC
are 500Hz - 1Khz. Most configuration options are exposed as ROS 2 parameters and the WBC
problem can be configured according to the user’s needs using .yaml configuration files.

Additionally, Python bindings for most of the library functions are available2.

The ARC-OPT library for Whole-Body Control has been used in various scientific works
(Mronga et al., 2022, 2020; Mronga & Kirchner, 2021; Popescu et al., 2022), and evaluated
on different robots, like, e.g., the RH5 humanoid (Eßer et al., 2021) shown in Figure 4.

Acknowledgements
ARC-OPT is supported through grants from the German Federal Ministry of Education and
Research (BMBF), grant numbers 01IW21002 (M-Rock project), 01IW20004 (VeryHuman
project) and 01IW24008 (CoEx project).

Figure 4: RH5 Humanoid robot standing on one leg using the ARC-OPT library

2https://github.com/ARC-OPT/wbc_py

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

4

https://github.com/ARC-OPT/wbc_py
https://doi.org/10.21105/joss.06696


References
Bambade, A., El-Kazdadi, S., Taylor, A., & Carpentier, J. (2022, June). PROX-QP: Yet

another Quadratic Programming Solver for Robotics and beyond. RSS 2022 - Robotics:
Science and Systems. https://doi.org/10.15607/rss.2022.xviii.040

Buondonno, G. (2021). Eiquadprog. https://github.com/stack-of-tasks/eiquadprog

Caron, S., De Mont-Marin, Y., Budhiraja, R., Bang, S. H., Domrachev, I., & Nedelchev,
S. (2024). Pink: Python inverse kinematics based on Pinocchio (Version 3.1.0). https:
//github.com/stephane-caron/pink

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., & Mansard,
N. (2019). The Pinocchio C++ library – a fast and flexible implementation of rigid body
dynamics algorithms and their analytical derivatives. IEEE International Symposium on
System Integrations (SII). https://doi.org/10.1109/sii.2019.8700380

Eßer, J., Kumar, S., Peters, H., Bargsten, V., Gea, J. de, Mastalli, C., Stasse, O., & Kirchner,
F. (2021). Design, analysis and control of the series-parallel hybrid RH5 humanoid robot.
2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), 400–407.
https://doi.org/10.1109/HUMANOIDS47582.2021.9555770

Felis, M. L. (2016). RBDL: An efficient rigid-body dynamics library using recursive algorithms.
Autonomous Robots, 1–17. https://doi.org/10.1007/s10514-016-9574-0

Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2015). Optimization based full body
control for the atlas robot. IEEE-RAS International Conference on Humanoid Robots,
120–127. https://doi.org/10.1109/HUMANOIDS.2014.7041347

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: A
parametric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4), 327–363. https://doi.org/10.1007/s12532-014-0071-1

Kumar, S., Szadkowski, K. A. von, Mueller, A., & Kirchner, F. (2020). An analytical and
modular software workbench for solving kinematics and dynamics of series-parallel hybrid
robots. Journal of Mechanisms and Robotics, 12(2). https://doi.org/10.1115/1.4045941

Mronga, D., & Kirchner, F. (2021). Learning context-adaptive task constraints for robotic
manipulation. Robotics and Autonomous Systems, 141, 103779. https://doi.org/10.1016/
j.robot.2021.103779

Mronga, D., Knobloch, T., Gea Fernández, J. de, & Kirchner, F. (2020). A constraint-
based approach for human-robot collision avoidance. Advanced Robotics, 1–17. https:
//doi.org/10.1080/01691864.2020.1721322

Mronga, D., Kumar, S., & Kirchner, F. (2022). Whole-body control of series-parallel hybrid
robots. 2022 International Conference on Robotics and Automation (ICRA), 228–234.
https://doi.org/10.1109/ICRA46639.2022.9811616

Pandala, A. G., Ding, Y., & Park, H.-W. (2019). qpSWIFT: A real-time sparse quadratic
program solver for robotic applications. IEEE Robotics and Automation Letters, 4(4),
3355–3362. https://doi.org/10.1109/LRA.2019.2926664

Popescu, M., Mronga, D., Bergonzani, I., Kumar, S., & Kirchner, F. (2022). Experimental
investigations into using motion capture state feedback for real-time control of a humanoid
robot. Sensors, 22(24). https://doi.org/10.3390/s22249853

Posa, M., Kuindersma, S., & Tedrake, R. (2016). Optimization and stabilization of trajectories
for constrained dynamical systems. 2016 IEEE International Conference on Robotics and
Automation (ICRA), 1366–1373. https://doi.org/10.1109/ICRA.2016.7487270

Prete, A. del, Mansard, N., Ramos Ponce, O. E., Stasse, O., & Nori, F. (2016). Imple-

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

5

https://doi.org/10.15607/rss.2022.xviii.040
https://github.com/stack-of-tasks/eiquadprog
https://github.com/stephane-caron/pink
https://github.com/stephane-caron/pink
https://doi.org/10.1109/sii.2019.8700380
https://doi.org/10.1109/HUMANOIDS47582.2021.9555770
https://doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1109/HUMANOIDS.2014.7041347
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1115/1.4045941
https://doi.org/10.1016/j.robot.2021.103779
https://doi.org/10.1016/j.robot.2021.103779
https://doi.org/10.1080/01691864.2020.1721322
https://doi.org/10.1080/01691864.2020.1721322
https://doi.org/10.1109/ICRA46639.2022.9811616
https://doi.org/10.1109/LRA.2019.2926664
https://doi.org/10.3390/s22249853
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.21105/joss.06696


menting Torque Control with High-Ratio Gear Boxes and without Joint-Torque Sensors.
International Journal of Humanoid Robotics, 13(1), 1550044. https://doi.org/10.1142/
s0219843615500449

Sentis, L., & Khatib, O. (2006). A whole-body control framework for humanoids operating
in human environments. Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., 2641–2648. https://doi.org/10.1109/ROBOT.2006.
1642100

Smits, R., De Laet, T., Claes, K., Bruyninckx, H., & De Schutter, J. (2009). iTASC:
A tool for multi-sensor integration in robot manipulation. In H. Hahn, H. Ko, & S.
Lee (Eds.), Multisensor fusion and integration for intelligent systems: An edition of
the selected papers from the IEEE international conference on multisensor fusion and
integration for intelligent systems 2008 (pp. 235–254). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-89859-7_17

Tedrake, R., & Drake Development Team, the. (2019). Drake: Model-based design and
verification for robotics. https://drake.mit.edu

University of Texas at Austin, H.-C. R. L. of the. (2021). ControlIt! - a whole body operational
space control middleware. https://github.com/liangfok/controlit

Mronga, & Kirchner. (2024). The ARC-OPT Library for Whole-Body Control of Robotic Systems. Journal of Open Source Software, 9(104), 6696.
https://doi.org/10.21105/joss.06696.

6

https://doi.org/10.1142/s0219843615500449
https://doi.org/10.1142/s0219843615500449
https://doi.org/10.1109/ROBOT.2006.1642100
https://doi.org/10.1109/ROBOT.2006.1642100
https://doi.org/10.1007/978-3-540-89859-7_17
https://drake.mit.edu
https://github.com/liangfok/controlit
https://doi.org/10.21105/joss.06696

	Summary
	Statement of need
	Description
	Example
	ROS 2 integration and Python Bindings
	Acknowledgements
	References

