
CoastSeg: an accessible and extendable hub for
satellite-derived-shoreline (SDS) detection and
mapping
Sharon Fitzpatrick 1, Daniel Buscombe 1, Jonathan A. Warrick 2, Mark
A. Lundine 2, and Kilian Vos 3

1 Contracted to U.S. Geological Survey Pacific Coastal and Marine Science Center, Santa Cruz,
California, United States. 2 U.S. Geological Survey Pacific Coastal and Marine Science Center, Santa
Cruz, California, United States. 3 New South Wales Department of Planning and Environment, Sydney,
Australia

DOI: 10.21105/joss.06683

Software
• Review
• Repository
• Archive

Editor: Taher Chegini
Reviewers:

• @FlorisCalkoen
• @fmemuir

Submitted: 03 April 2024
Published: 01 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
CoastSeg is an interactive browser-based program that aims to broaden the adoption of
satellite-derived shoreline (SDS) detection workflows among coastal scientists and coastal
resource management practitioners. SDS is a sub-field of coastal sciences that aims to detect
and post-process a time-series of shoreline locations from publicly available satellite imagery
(Luijendijk et al., 2018; Turner et al., 2021; Vitousek, Buscombe, et al., 2023). CoastSeg

is a Python package installed via pip into a conda environment that serves as an toolkit for
building custom SDS workflows. CoastSeg also provides full SDS workflow implementations
via Jupyter notebooks and Python scripts that call functions and classes in the core CoastSeg

toolkit for specific workflows. CoastSeg provides two fully functioning SDS workflows, and
its design allows for collaborators in the SDS software community to contribute additional
workflows. All the code, notebooks, scripts, and documentation are hosted on the CoastSeg

GitHub repository (Fitzpatrick et al., 2024).

So-called ‘instantaneous’ SDS workflows, where shorelines are extracted from each individual
satellite image rather than temporal composites (Bishop-Taylor et al., 2021; Pardo-Pascual et
al., 2012), follow a basic recipe, namely 1) waterline estimation, where the 2D (x,y) location
of the land-sea interface is determined, and 2) water-level correction, where the waterline
location is mapped onto a shore-perpendicular transect, converted to a linear distance along
that transect, then corrected for water level, and referenced to a particular elevation contour
on the beach (Vos et al., 2019). The resulting measurement is called a ‘shoreline’ and it is
the location that the waterline intersects a particular elevation datum. Water level corrections
typically only account for tide (Vos et al., 2019), but recently SDS workflows have incorporated
both wave setup and runup correction, which are a function of the instantaneous wave field
at the time of image acquisition (Castelle et al., 2021; Konstantinou et al., 2023; Vitousek,
Buscombe, et al., 2023; Vitousek, Vos, et al., 2023).

CoastSeg has three broad aims. The first aim is to be a toolkit consisting of functions
that operate the core SDS workflow functionalities. This includes file input/output, image
downloading, geospatial conversion, tidal model API handling, mapping 2D shorelines to 1D
transect-based measurements, and numerous other functions common to a basic SDS workflow,
regardless of a particular waterline estimation methodology. This waterline detection algorithm
will be crucial to the success of any SDS workflow because it identifies the boundary between
sea and land, which serves as the basis for shoreline mapping. The idea behind the design of
CoastSeg is that users could extend or customize functionality using scripts and notebooks.

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

1

https://orcid.org/0000-0001-6513-9132
https://orcid.org/0000-0001-6217-5584
https://orcid.org/0000-0002-0205-3814
https://orcid.org/0000-0002-2878-1713
https://orcid.org/0000-0002-9518-1582
https://doi.org/10.21105/joss.06683
https://github.com/openjournals/joss-reviews/issues/6683
https://github.com/SatelliteShorelines/CoastSeg
https://doi.org/10.5281/zenodo.12555413
https://cheginit.github.io/
https://orcid.org/0000-0002-5430-6000
https://github.com/FlorisCalkoen
https://github.com/fmemuir
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06683


The second aim of CoastSeg is therefore to provide fully functioning SDS implementations in an
accessible browser notebook format. Our principal objective to date has been to re-implement
and improve upon a popular existing toolbox, CoastSat (Vos et al., 2019), allowing the user to
carry out the well-established CoastSat SDS workflow with a well-supported literature (Castelle
et al., 2021, 2022; Konstantinou et al., 2023; McLean et al., 2023; Vandenhove et al., 2024;
Vitousek, Vos, et al., 2023; Vos, Harley, et al., 2023; Vos, Splinter, et al., 2023; Warrick et
al., 2023), but in a more accessible and convenient way within the CoastSeg platform. In
order to achieve this, we developed CoastSat-package (Vos & Fitzpatrick, 2023), a Python
package that is installed into the CoastSeg conda environment. CoastSat-package contains
re-implemented versions of the original CoastSat codes, addresses the lack of pip or conda
installability of CoastSat, and isolates the CoastSeg-specific enhancements from the original
CoastSat code. These improvements include additional image download filtering, such as by
cloud coverage in the scene, additional parameters to control shoreline extraction, and more
accessible output formats, all while retaining the foundational elements of the original CoastSat
code. The CoastSeg re-implementation of the CoastSat workflow is end-to-end within a single
notebook. That notebook allows the user to, among other tasks: a) define a Region of
Interest (ROI) on a webmap, and upload geospatial vector format files; b) define, download
and post-process satellite imagery; c) identify waterlines in that imagery using the CoastSat

method (Vos et al., 2019); d) correct those waterlines to elevation-based shorelines using tidal
elevation-datum corrections provided through interaction with the pyTMD (Sutterley, 2024)
API; and e) save output files in a variety of modern geospatial and other formats for subsequent
analysis. Additionally, CoastSeg's toolkit-based design enables it to run as non-interactive
scripts, catering to larger scale shoreline analysis projects.This flexibility ensures that CoastSeg
can accommodate a wide range of research needs, from detailed, interactive exploration to
extensive, automated analyses.

The third and final aim of CoastSeg is to implement a method to carry out SDS workflows
in experimental and collaborative contexts, which aids both oversight and reproducibility, as
well as practical needs based on division of labor. We do this using sessions, a mechanism
for saving the current state of the application into a session’s folder. This folder contains all
necessary inputs, outputs, and references to downloaded data used to generate the results.
Sessions allow users to iteratively experiment with different combinations of settings and make
CoastSeg fully reproducible because everything needed to reproduce the session is saved to the
folder. Users can share their sessions with others, enabling peers to replicate experiments,
build upon previous work, or access data downloaded by someone else. This simplifies handovers
to new users from existing users, simplifies teaching of the program, and encourages collective
experimentation, which may result in better shoreline data. Users might expect to adjust
settings across several sessions to find the optimal configuration for each site, typically requiring
two to five adjustments to achieve the best quality shorelines.

CoastSeg is also designed to be extendable, serving as a hub that hosts alternative SDS
workflows and similar workflows that can be encoded in a Jupyter notebook built upon the
CoastSeg and CoastSat-package core functionalities. Additional notebooks can be designed
to carry out shoreline extraction using alternative methods. We provide an example of an
alternative SDS workflow based on a deep-learning based semantic segmentation model that
is briefly summarized at the end of this paper. To implement a custom waterline detection
workflow the originator of that workflow would contribute a new Jupyter notebook, and add
their specific waterline detection algorithm to the CoastSeg source code, so it could be used
in their notebook’s implementation.

Statement of Need
Coastal scientists and resource managers now have access to extensive collections of satellite
data spanning more than four decades. However, it’s only in recent years that advancements
in algorithms, machine learning, and deep learning have enabled the automation of processing

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

2

https://doi.org/10.21105/joss.06683


this satellite imagery to accurately identify and map shorelines from imagery, a process known
as Satellite-Derived Shorelines, or SDS. SDS workflows (Almonacid-Caballer et al., 2016;
Garcia-Rubio et al., 2015) are gaining rapidly in popularity, particularly since the publication of
the open-source implementation of the CoastSat workflow (Vos et al., 2019) for instantaneous
SDS in 2018 (Vos et al., 2019). Existing open-source software for SDS often requires the
user to navigate between platforms (non-reproducible elements), develop custom code, and/or
engage in substantial manual effort.

We built CoastSeg with the aim of enhancing the CoastSat workflow. Our design streamlines
the entire shoreline extraction process, thus facilitating a more efficient experimental approach
to determine the optimal combination of settings to extract the greatest number of accurate
shorelines. CoastSeg achieves these improvements through several key advancements: it
ensures reproducible sessions for consistent comparison and analysis; introduces additional
filtering mechanisms to refine results; and provides an interactive user webmap that allows
users to view the quality of the extracted shorelines. Further, CoastSeg has been designed
specifically to host alternative SDS workflows, recognizing that it is a nascent field of coastal
science, and the optimal methodologies for all coastal environments and sources of imagery are
yet to be established. Therefore, CoastSeg provides a means with which to extract shorelines
using multiple methods and adopt the one that most suits their needs, or implement new
methods.

We summarize the needs met by the CoastSeg project as follows:

• A re-implementation of (and improvement of) the CoastSat workflow with pip-installable
APIs and coastsat-package.

• A browser-based workflow and an interactive mapping interface provided by Leafmap
(Wu, 2021).

• A more accessible, entirely graphical and menu-based SDS workflow, with no (mandatory)
exposure of source code to the user.

• A session system that streamlines the experimentation process to find the settings that
extract optimal shorelines from satellite imagery.

• Improved core SDS workflow components, such as a faster and more seamless tidal
correction workflow, and faster image downloading.

• Consolidation of workflows in a single platform and reusable codebase.

• An extendable hub of alternative SDS workflows in one location.

Implementation of core SDS workflow

Architecture & Design
At a high level, CoastSeg is designed to be an accessible and extendable hub for both CoastSat-
based and alternate workflows, each of which are implemented in a single notebook. The user
is therefore presented with a single menu of notebooks, each of which calls on a common
set of core functionalities provided by CoastSeg and coastsat-package, and export data to
common file formats and conventions.

CoastSeg is installable as a package into a conda environment. CoastSeg notebooks are
accessed from GitHub. We also created a pip package for the CoastSat workflow we named
CoastSat-package in order to: a) improve the CoastSat method’s software implementation
without affecting the parent repository, and b) install it as a package into a conda environment,
rather than duplicate code from CoastSat.

CoastSeg is built with an object-oriented architecture, where elements required by the CoastSat

workflow such as regions of interest, reference shorelines, and transects are represented as

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

3

https://doi.org/10.21105/joss.06683


distinct objects on the map. Each class stores data specific to that feature type as well as
encompassing methods for styling the feature on the map, downloading default features, and
executing various post-processing functions.

Sessions
SDS workflows require manipulating various settings in order to extract optimal shorelines.
There are numerous settings in the CoastSat workflow, and sometimes determining optimal
shorelines can be an iterative process requiring experimentation with settings. Sub-optimal
shoreline extraction may result merely through user fatigue or a combination of misconfigured
settings. Therefore, CoastSeg employs a session-based system that enables users to iteratively
experiment with different combinations of settings. Each time the user makes adjustments to
the settings used to extract shorelines from the imagery a new session folder is saved with
the updated settings. This session system is what makes CoastSeg fully reproducible because
all the settings, inputs, and outputs are stored within each session, as well as a reference to
the downloaded data used to generate the extracted shorelines in the session. Moreover, the
session system in CoastSeg fosters a collaborative environment. Users can share their sessions
with others, enabling peers to replicate experiments, build upon previous work, or access data
downloaded by someone else. This simplifies the process for new users and encourages collective
experimentation and data sharing. This reproducibility and collaboration are beneficial in
research contexts.

Improvements to the CoastSat workflow
Accessibility

CoastSeg facilitates entirely browser-based workflows with an interactive webmap and
ipywidget controls. It interfaces with the Zenodo API to download reference shorelines
(Roger Sayre & Reed, 2019) for any location in the world, organized into 5x5 degree chunks in
GeoJSON format (Buscombe, 2023). CoastSeg also provides transects for specific locations,
offering beachface slope metadata (Buscombe & Fitzpatrick, 2023) that is available when
users hover over each transect with their cursor. We have improved the reliability of CoastSeg
through rigorous error handling, which includes developer log files for in-depth diagnostics,
user report files for transparency, and detailed error messages that provide guidance for
troubleshooting and problem resolution. We have also provided a set of utility scripts for
common data input/output tasks, often the result of specific requests from our software
testers (see Acknowledgments). In addition to a project wiki and improved documentation, we
have researched minimum, maximum, and recommended values for all settings, set suggested
default values, and have provided visual project management aids.

Performance

CoastSeg improves upon the Google Earth Engine-based image retrieval process adopted by
CoastSat by offering a more reliable and efficient download mechanism. Like CoastSat, we
limit image sources to only the Landsat and Sentinel missions, which are publicly available to
all. CoastSeg supports downloading multiple regions of interest in a single session, and ensures
downloads persist even over an unstable internet connection. This is important because SDS
users typically download all available imagery from an ROI, which may amount to several
hundred to thousand individual downloaded scenes. Should a download error occur, CoastSeg
briefly pauses before reconnecting to Google Earth Engine, ensuring that the process does not
halt completely. In cases where image downloading fails repeatedly, the filename is logged to
a report file located within the downloaded data folder. This report file tracks the status of
all requested images from Google Earth Engine. CoastSeg’s reliable image retrieval process
enhances coastal monitoring by facilitating easier data management and collaboration.

We added helpful workflow components such as image filtering options; for example, users can

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

4

https://doi.org/10.21105/joss.06683


now filter their imagery based on image size and the proportion of no data pixels in an image.
Additionally, the user can decide to turn off cloud masking, which is necessary when the cloud
masking process fails and obscures non-cloudy regions such as bright pixels of sand beaches.
Finally, we replaced non-cross-platform components of the original workflow; for example, the
pickle format was replaced with JSON or geoJSON formats which are both human-readable
and compatible with GIS and webGIS.

Figure 1: Schematic of the tidal correction workflow used by a) CoastSat and b) CoastSeg.

Tide

The CoastSat methodology for applying tide correction to shoreline positions involved a multi-
step process. First, the user would need to independently download and configure the FES2014
(Lyard et al., 2021) tide model, a widely recognized tidal model. After configuring the tide
model, users would then generate tide estimates at 15-minute intervals for a single location
within their ROI across the entire satellite imagery time series. The tide estimate closest to
the time of shoreline detection was used to adjust the shoreline position. This method, while
comprehensive, was time-consuming, potentially requiring hours to generate all necessary tide
estimates.

In contrast, CoastSeg introduces a significant improvement to this process by leveraging the
pyTMD API (Sutterley, 2024) for a more streamlined and accurate approach to tidal correction
(Figure 1). pyTMD facilitates downloading a variety of tide models, including FES2014 and
models specific to polar regions, and automates tide estimations. We provide an automated
workflow that downloads and subdivides the FES2014 model data into 11 global regions (an
idea adopted from (Krause et al., 2021)). This subdivision allows the program to access
only relevant subsets of data, drastically reducing the time required to estimate tides—from
hours to minutes for multi-decadal satellite time series. Furthermore, CoastSeg calculates

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

5

https://doi.org/10.21105/joss.06683


tide estimates for each transect corresponding to the times shorelines were detected. This
ensures tide corrections are based on temporal and spatial matches, enhancing the accuracy of
shoreline position adjustments.

Figure 2: Schematic of the SDS workflows currently available in CoastSeg. a) CoastSat workflow; b)
Zoo workflow. Each session has distinct settings that influence the quality of the extracted shoreline. In
this example, the reference shoreline buffer size varies between sessions in both the CoastSat and Zoo
workflows.

Implementation of an Alternative Deep-Learning-Based SDS
Workflow
As we noted above, we have developed a notebook that carries out an alternative SDS workflow
based on deep-learning based semantic segmentation models. The name ‘CoastSeg’ is derived
from this functionality—using semantic segmentation models for the precise classification
of coastal geomorphological features. This advanced classification refines the extraction of
shoreline data from satellite imagery. To implement this custom workflow, we created a new
Jupyter notebook, and added source code to the CoastSeg codebase. The changes ensured
that the inputs and outputs were those expected by the core functions in the CoastSeg toolkit.

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

6

https://doi.org/10.21105/joss.06683


We call this alternative workflow the Zoo workflow, in reference to the fact that the deep
learning models implemented originate from the Segmentation Zoo GitHub repository and
result from the Segmentation Gym deep-learning based image segmentation model training
package (Buscombe & Goldstein, 2022). The name Zoo has become a standard for online
trained ML models, and the repository contains both SDS models and others. Figure 2
describes in detail how the two workflows differ. While the optimal SDS workflow adopted for
waterline detection, as determined against field validation data, will be the subject of a future
manuscript, it is important to note that these models have not been thoroughly tested yet.
We are currently benchmarking these models across various coastal environments, with the
results to be documented in a separate repository and linked to CoastSeg upon conclusion.

Project Roadmap
We intend CoastSeg to be a collaborative research project and encourage contributions from
the SDS community. As well as implementing alternative SDS waterline detection workflows,
other improvements that could continue to be made include more (or more refined) outlier
detection methods, image filtering procedures, and other basic image pre- or post-processing
routines, especially image restoration on degraded imagery (Vitousek, Buscombe, et al., 2023).
Such additions would all be possible without major changes to the existing CoastSeg toolkit.

Integration of new models for the deep-learning workflow are planned, based on Normalized
Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI)
spectral indices, as is a new CoastSeg toolbox extension for daily 3-m Planetscope imagery
(Doherty et al., 2022) from Planet Labs. Docker may be adopted in the future to manage
dependencies in the conda virtual environment required to run the program. Other sources of
imagery and other spectral indices may have value in SDS workflows, and we encourage SDS
users to contribute their advances through a CoastSeg Jupyter notebook implementation.

It would also be possible to incorporate automated satellite image subpixel co-registration
in CoastSeg using the AROSICS package (Scheffler et al., 2017). This would co-register
all available imagery to the nearest-in-time LandSat image. Furthermore, future work could
include accounting for the contributions of runup and setup to total water level (Vitousek,
Vos, et al., 2023; Vos, Splinter, et al., 2023). In practice, this would merely add/subtract a
height from the instantaneous predicted tide, then apply horizontal correction. However, the
specific methods used to estimate runup or setup from the prevailing wave field would require
integration with observed or hindcasted databases of wave conditions.

Acknowledgments
The authors would like to thank Qiusheng Wu, developer of Leafmap, which adds a lot of
functionality to CoastSeg. Thanks also to the developers and maintainers of pyTMD, DEA-tools,
xarray, and GDAL, without which this project would be impossible. We would also like to
thank Freya Muir and Floris Calkoen for reviewing CoastSeg. We acknowledge contributions
from Robbi Bishop-Taylor, Evan Goldstein, Venus Ku, software testing and suggestions from
Catherine Janda, Eli Lazarus, Andrea O’Neill, Ann Gibbs, Rachel Henderson, Emily Himmelstoss,
Kathryn Weber, and Julia Heslin, and support from USGS Coastal Hazards and Resources
Program, and USGS Merbok Supplemental. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the U.S. Government.

References
Almonacid-Caballer, J., Sanchez-Garcia, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., &

Palomar-Vazquez, J. (2016). Evaluation of annual mean shoreline position deduced from

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

7

https://doi.org/10.21105/joss.06683


Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79–88.
https://doi.org/10.1016/j.margeo.2015.12.015

Bishop-Taylor, R., Nanson, R., Sagar, S., & Lymburner, L. (2021). Mapping Australia’s
Dynamic Coastline at Mean Sea Level using Three Decades of Landsat Imagery. Remote
Sensing of Environment, 267, 112734. https://doi.org/10.1016/j.rse.2021.112734

Buscombe, D. (2023). CoastSeg: Shoreline data at 30-m spatial resolution for 5x5 degree
regions of the world, in geoJSON format (Version v1.0) [Data set]. Zenodo. https:
//doi.org/10.5281/zenodo.7786276

Buscombe, D., & Fitzpatrick, S. (2023). CoastSeg: Beach transects and beachface slope
database v1.0 (Version v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8187949

Buscombe, D., & Goldstein, E. (2022). A reproducible and reusable pipeline for segmentation
of geoscientific imagery. Earth and Space Science, 9(9), e2022EA002332. https://doi.org/
10.1029/2022EA002332

Castelle, B., Masselink, G., Scott, T., Stokes, C., Konstantinou, A., Marieu, V., & Bujan,
S. (2021). Satellite-derived shoreline detection at a high-energy meso-macrotidal beach.
Geomorphology, 383, 107707. https://doi.org/10.1016/j.geomorph.2021.107707

Castelle, B., Ritz, A., Marieu, V., Lerma, A. N., & Vandenhove, M. (2022). Primary drivers of
multidecadal spatial and temporal patterns of shoreline change derived from optical satellite
imagery. Geomorphology, 413, 108360. https://doi.org/10.1016/j.geomorph.2022.108360

Doherty, Y., Harley, M. D., Vos, K., & Splinter, K. D. (2022). A Python toolkit to monitor sandy
shoreline change using high-resolution PlanetScope cubesats. Environmental Modelling &
Software, 157, 105512. https://doi.org/10.1016/j.envsoft.2022.105512

Fitzpatrick, S., Buscombe, D., Lundine, M., Warrick, J., & Vos, K. (2024). SatelliteShore-
lines/CoastSeg: v1.2.9. Zenodo. https://doi.org/10.5281/zenodo.12555413

Garcia-Rubio, G., Huntley, D., & Russell, P. (2015). Evaluating shoreline identification using
optical satellite images. Marine Geology, 359, 96–105. https://doi.org/10.1016/j.margeo.
2014.11.002

Konstantinou, A., Scott, T., Masselink, G., Stokes, K., Conley, D., & Castelle, B. (2023).
Satellite-based shoreline detection along high-energy macrotidal coasts and influence of
beach state. Marine Geology, 107082. https://doi.org/10.1016/j.margeo.2023.107082

Krause, C., Dunn, B., Bishop-Taylor, R., Adams, C., Burton, C., Alger, M., Chua, S., Phillips, C.,
Newey, V., Kouzoubov, K., Leith, A., Ayers, D., & Hicks, A. (2021). Digital Earth Australia
notebooks and tools repository. https://github.com/GeoscienceAustralia/dea-notebooks/;
Commonwealth of Australia (Geoscience Australia). https://doi.org/10.26186/145234

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S.
(2018). The State of the World’s Beaches. Scientific Reports, 8(1), 6641. https:
//doi.org/10.1038/s41598-018-24630-6

Lyard, F. H., Allain, D. J., Cancet, M., Carrere, L., & Picot, N. (2021). FES2014 global
ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https:
//doi.org/10.5194/os-17-615-2021

McLean, R., Thom, B., Shen, J., & Oliver, T. (2023). 50 years of Beach–Foredune change
on the Southeastern Coast of Australia: Bengello Beach, Moruya, NSW, 1972–2022.
Geomorphology, 439, 108850. https://doi.org/10.1016/j.geomorph.2023.108850

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012).
Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images
with subpixel precision. Remote Sensing of Environment, 123, 1–11. https://doi.org/10.
1016/j.rse.2012.02.024

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

8

https://doi.org/10.1016/j.margeo.2015.12.015
https://doi.org/10.1016/j.rse.2021.112734
https://doi.org/10.5281/zenodo.7786276
https://doi.org/10.5281/zenodo.7786276
https://doi.org/10.5281/zenodo.8187949
https://doi.org/10.1029/2022EA002332
https://doi.org/10.1029/2022EA002332
https://doi.org/10.1016/j.geomorph.2021.107707
https://doi.org/10.1016/j.geomorph.2022.108360
https://doi.org/10.1016/j.envsoft.2022.105512
https://doi.org/10.5281/zenodo.12555413
https://doi.org/10.1016/j.margeo.2014.11.002
https://doi.org/10.1016/j.margeo.2014.11.002
https://doi.org/10.1016/j.margeo.2023.107082
https://github.com/GeoscienceAustralia/dea-notebooks/
https://doi.org/10.26186/145234
https://doi.org/10.1038/s41598-018-24630-6
https://doi.org/10.1038/s41598-018-24630-6
https://doi.org/10.5194/os-17-615-2021
https://doi.org/10.5194/os-17-615-2021
https://doi.org/10.1016/j.geomorph.2023.108850
https://doi.org/10.1016/j.rse.2012.02.024
https://doi.org/10.1016/j.rse.2012.02.024
https://doi.org/10.21105/joss.06683


Roger Sayre, S. H., Suzanne Noble, & Reed, A. (2019). A new 30 meter resolution global
shoreline vector and associated global islands database for the development of standardized
ecological coastal units. Journal of Operational Oceanography, 12(sup2), S47–S56. https:
//doi.org/10.1080/1755876X.2018.1529714

Scheffler, D., Hollstein, A., Diedrich, H., Segl, K., & Hostert, P. (2017). AROSICS: An
automated and robust open-source image co-registration software for multi-sensor satellite
data. Remote Sensing, 9(7), 676. https://doi.org/10.3390/rs9070676

Sutterley, T. (2024). Tsutterley/pyTMD: v2.1.1. Zenodo. https://doi.org/10.5281/zenodo.
10929240

Turner, I. L., Harley, M. D., Almar, R., & Bergsma, E. W. J. (2021). Satellite optical imagery
in Coastal Engineering. Coastal Engineering, 167, 103919. https://doi.org/10.1016/j.
coastaleng.2021.103919

Vandenhove, M., Castelle, B., Lerma, A. N., Marieu, V., Dalet, E., Hanquiez, V., Mazeiraud,
V., Bujan, S., & Mallet, C. (2024). Secular shoreline response to large-scale estuarine
shoal migration and welding. Geomorphology, 445, 108972. https://doi.org/10.1016/j.
geomorph.2023.108972

Vitousek, S., Buscombe, D., Vos, K., Barnard, P. L., Ritchie, A. C., & Warrick, J. A. (2023).
The future of coastal monitoring through satellite remote sensing. Cambridge Prisms:
Coastal Futures, 1, e10. https://doi.org/10.1017/cft.2022.4

Vitousek, S., Vos, K., Splinter, K. D., Erikson, L., & Barnard, P. L. (2023). A model integrating
satellite-derived shoreline observations for predicting fine-scale shoreline response to waves
and sea-level rise across large coastal regions. Journal of Geophysical Research: Earth
Surface, e2022JF006936. https://doi.org/10.1029/2022JF006936

Vos, K., & Fitzpatrick, S. (2023). Coastsat-package. PyPi. https://doi.org/10.5281/zenodo.
12553179

Vos, K., Harley, M. D., Turner, I. L., & Splinter, K. D. (2023). Pacific shoreline erosion and
accretion patterns controlled by El Niño/Southern Oscillation. Nature Geoscience, 16(2),
140–146. https://doi.org/10.1038/s41561-022-01117-8

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A
Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available
satellite imagery. Environmental Modelling & Software, 122, 104528. https://doi.org/10.
1016/j.envsoft.2019.104528

Vos, K., Splinter, K. D., Palomar-Vázquez, J., Pardo-Pascual, J. E., Almonacid-Caballer, J.,
Cabezas-Rabadán, C., Kras, E. C., Luijendijk, A. P., Calkoen, F., Almeida, L. P., & others.
(2023). Benchmarking satellite-derived shoreline mapping algorithms. Communications
Earth & Environment, 4(1), 345. https://doi.org/10.1038/s43247-023-01001-2

Warrick, J. A., Vos, K., Buscombe, D., Ritchie, A. C., & Curtis, J. A. (2023). A Large
Sediment Accretion Wave along a Northern California Littoral Cell. Journal of Geophysical
Research: Earth Surface, e2023JF007135. https://doi.org/10.1029/2023JF007135

Wu, Q. (2021). Leafmap: A Python package for interactive mapping and geospatial analysis
with minimal coding in a Jupyter environment. Journal of Open Source Software, 6(63),
3414. https://doi.org/10.21105/joss.03414

Fitzpatrick et al. (2024). CoastSeg: an accessible and extendable hub for satellite-derived-shoreline (SDS) detection and mapping. Journal of
Open Source Software, 9(99), 6683. https://doi.org/10.21105/joss.06683.

9

https://doi.org/10.1080/1755876X.2018.1529714
https://doi.org/10.1080/1755876X.2018.1529714
https://doi.org/10.3390/rs9070676
https://doi.org/10.5281/zenodo.10929240
https://doi.org/10.5281/zenodo.10929240
https://doi.org/10.1016/j.coastaleng.2021.103919
https://doi.org/10.1016/j.coastaleng.2021.103919
https://doi.org/10.1016/j.geomorph.2023.108972
https://doi.org/10.1016/j.geomorph.2023.108972
https://doi.org/10.1017/cft.2022.4
https://doi.org/10.1029/2022JF006936
https://doi.org/10.5281/zenodo.12553179
https://doi.org/10.5281/zenodo.12553179
https://doi.org/10.1038/s41561-022-01117-8
https://doi.org/10.1016/j.envsoft.2019.104528
https://doi.org/10.1016/j.envsoft.2019.104528
https://doi.org/10.1038/s43247-023-01001-2
https://doi.org/10.1029/2023JF007135
https://doi.org/10.21105/joss.03414
https://doi.org/10.21105/joss.06683

	Summary
	Statement of Need
	Implementation of core SDS workflow
	Architecture & Design
	Sessions
	Improvements to the CoastSat workflow
	Accessibility
	Performance
	Tide


	Implementation of an Alternative Deep-Learning-Based SDS Workflow
	Project Roadmap
	Acknowledgments
	References

