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Summary
VisualTorch is a library designed for visualizing neural network architectures in PyTorch. It
offers support for multiple visualization styles, such as layered-style, graph-style, and the newly
added LeNet-like visualization. When provided with a sequential or custom PyTorch model,
alongside the input shape and visualization specifications, VisualTorch automatically translates
the model structure into an architectural diagram. The resulting diagram can be refined
using various configurations, including style, color, opacity, size, and a legend. VisualTorch
is particularly valuable for projects involving PyTorch-based neural networks. By facilitating
the generation of graphics with a single function call, it streamlines the process of visualizing
neural network architectures. This ensures that the produced results are suitable for publication
with minimal additional modifications. Moreover, owing to its diverse customization options,
VisualTorch empowers users to generate polished figures suitable for publication.

Statement of Need
Neural network architecture visualization plays an important role in the scientific process within
the realm of artificial intelligence and machine learning. While mathematical equations and
descriptive paragraphs provide detailed information about architectures, effective visualizations
can significantly aid scientists in communicating their proposed architectures to others.

In deep learning projects based on Keras (Chollet & others, 2015), the visualkeras project
(Gavrikov, 2020) has been gaining traction over nearly four years of development. It offers
visualization of Keras-based neural network architectures in two styles: layered and graph.
The visualtorch library provides visualization for PyTorch-based architectures (Paszke et al.,
2019). PyTorch itself has gained popularity among deep learning frameworks within the
scientific community in recent years (Aoun et al., 2022). VisualTorch expands the functionality
of VisualKeras to PyTorch and offers more visualization styles, improved usability, and a
development environment by providing web-based documentation and CI/CD pipelines for
seamless future contributions and collaborations.

Introduction
Recent advancements in artificial intelligence have sparked widespread interest among re-
searchers, particularly in exploring innovative algorithmic approaches such as neural networks
or deep learning architectures. These architectures have demonstrated remarkable utility across
various AI applications, including computer vision, natural language processing, and robotics.
To implement neural network architectures, many researchers and practitioners often utilize
established deep learning frameworks, such as PyTorch (Paszke et al., 2019), TensorFlow
(Abadi & others, 2016), and Keras (Chollet & others, 2015).
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To effectively communicate their ideas, practitioners often employ architecture diagrams as
aids for comprehension. While detailed mathematical descriptions help in understanding the
intricacies of algorithms, visual representations of architectures offer an additional means of
conveying concepts, enabling individuals to grasp the overall visual representation. VisualTorch
is designed to facilitate the visualization of PyTorch-based neural network architectures. Instead
of manually constructing diagrams from scratch, practitioners can simply leverage our library to
generate visualizations. With a variety of customization options, users can tailor visualizations
to suit their preferences.

One of the important features of VisualTorch is its ability to automatically map a neural network
model to visualizations using various styles such as layered, graph, and LeNet-like visualization
(Lecun et al., 1998). Users can further refine these visualizations by adjusting attributes such
as color, opacity, and size. VisualTorch aims to offer a solution for rapidly visualizing a wide
range of neural network architectures in PyTorch. Inspired by the visualkeras (Gavrikov, 2020)
project, our VisualTorch library shares a similar motivation: to assist in visualizing neural
network architectures. Unlike visualkeras, our library offers enhanced functionality specifically
tailored for PyTorch-based architectures, supporting models defined with torch.nn.Module

and torch.nn.Sequential. In addition to providing more visualization styles, including the
recent addition of LeNet style, our library also provides online web-based documentation and
streamlined CI/CD workflows, which improve usability and facilitate future development.

Usage Example
In this section, we provide a usage example for each of the layered, LeNet, and graph-style
visualizations. The graphic visualizations, displayed using the Matplotlib library (Hunter, 2007),
are shown in Figure 1, Figure 2, and Figure 3.

Layered Style
import matplotlib.pyplot as plt

import visualtorch

from torch import nn

model = nn.Sequential(

nn.Conv2d(3, 16, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Conv2d(16, 32, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Conv2d(32, 64, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Flatten(),

nn.Linear(64 * 28 * 28, 256),

nn.ReLU(),

nn.Linear(256, 10),

)

input_shape = (1, 3, 224, 224)

img = visualtorch.layered_view(model, input_shape=input_shape, legend=True)

plt.axis("off")

plt.tight_layout()
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plt.imshow(img)

plt.show()

Figure 1: An example of layered style visualization generated using VisualTorch.

LeNet Style
import matplotlib.pyplot as plt

import visualtorch

from torch import nn

model = nn.Sequential(

nn.Conv2d(3, 8, kernel_size=3, padding=1),

nn.MaxPool2d(2, 2),

nn.Conv2d(8, 16, kernel_size=3, padding=1),

nn.MaxPool2d(2, 2),

)

input_shape = (1, 3, 128, 128)

img = visualtorch.lenet_view(model, input_shape=input_shape)

plt.axis("off")

plt.tight_layout()

plt.imshow(img)

plt.show()

Figure 2: An example of LeNet style visualization generated using VisualTorch.

Graph Style
import matplotlib.pyplot as plt

import torch

import visualtorch

Hendria, & Gavrikov. (2024). VisualTorch: Streamlining Visualization for PyTorch Neural Network Architectures. Journal of Open Source Software,
9(102), 6678. https://doi.org/10.21105/joss.06678.

3

https://doi.org/10.21105/joss.06678


from torch import nn

class SimpleDense(nn.Module):

def __init__(self) -> None:

super().__init__()

self.h0 = nn.Linear(4, 8)

self.h1 = nn.Linear(8, 8)

self.h2 = nn.Linear(8, 4)

self.out = nn.Linear(4, 2)

def forward(self, x: torch.Tensor) -> torch.Tensor:

x = self.h0(x)

x = self.h1(x)

x = self.h2(x)

return self.out(x)

model = SimpleDense()

input_shape = (1, 4)

img = visualtorch.graph_view(model, input_shape)

plt.axis("off")

plt.tight_layout()

plt.imshow(img)

plt.show()

Figure 3: An example of graph style visualization generated using VisualTorch.
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