
EdgeVPN.io: Seamless Software-defined Layer 2
Virtual Networking for Edge Computing

Kensworth Subratie 1* and Renato Figueiredo 1*

1 University of Florida, Gainesville, FL, USA * These authors contributed equally.
DOI: 10.21105/joss.06638

Software
• Review
• Repository
• Archive

Editor: Jonny Saunders
Reviewers:

• @abhishektiwari
• @pradeeban

Submitted: 15 February 2024
Published: 26 August 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
This paper describes the EdgeVPN.io software (Subratie, 2024), a novel technique that enables
virtual private Ethernet networks that span edge and cloud resources – including those
constrained by NATs and firewalls. EdgeVPN.io has been implemented as an open-source
virtual network software solution, and experiments with the software have demonstrated its
functionality and scalability. The design and evaluation are discussed further in Subratie et al.
(2023).

Statement of need
The advent of virtualization and cloud computing has fundamentally changed how distrib-
uted applications and services are deployed and managed. Emerging IoT and smart-spaces
applications exhibit requirements that are difficult to meet using existing cloud computing
models (Zhang et al., 2015). With the proliferation of IoT and mobile devices, virtualized
systems akin to those offered by cloud providers are increasingly needed geographically near
the network’s edge to perform processing tasks in proximity to the data sources and sinks.
Latency-sensitive, bandwidth-intensive applications can be decomposed into workflows that
leverage resources at the edge – a model referred to as fog computing - to bring compute
and short-term storage closer to the data sources and sinks. This eliminates the latency and
throughput penalties from moving data across large geographic distances and through high
contention, bandwidth-limited links. However, it introduces an operation and management
problem: it is necessary to interconnect all widely distributed components to create a virtualized
computing environment. Unfortunately, software and methodologies designed for the data
center are typically poorly suited for fog computing operations along the Internet’s edge due to
Internet Protocol (IP) constraints. Network virtualization stands at a unique point to address
these challenges. While existing Virtual Private Networks (VPNs) can mitigate hurdles such as
endpoint addressing and secure communication, current models are infeasible for operation
and management at the proposed scale of future IoT applications. A decentralized, scalable
system that supports dynamic membership, virtualizes addressable endpoints and provides
secure communication is needed.

An illustrative use case of EdgeVPN.io is a software service that improves safety and effectiveness
during multi-agency emergency response operations by enabling data-driven strategic and
tactical decision-making. The networking core, web services, and applications facilitate the
definition, deployment, and creation of ad hoc overlay networks. These virtual networks
will span multiple organizations collaborating towards a specific goal, regardless of location,
providing the necessary connectivity and confidentiality for intra-group communication across
the public Internet. The EdgeVPN.io virtual network aggregates and integrates heterogeneous
resources such as IoT sensors and actuators, analytic compute engines, and operation personnel
via their client devices (tablets, laptops, phones, etc.) across multiple organizations’ networks

Subratie, & Figueiredo. (2024). EdgeVPN.io: Seamless Software-defined Layer 2 Virtual Networking for Edge Computing. Journal of Open Source
Software, 9(100), 6638. https://doi.org/10.21105/joss.06638.

1

https://orcid.org/0000-0001-8248-2856
https://orcid.org/0000-0001-9841-6060
https://doi.org/10.21105/joss.06638
https://github.com/openjournals/joss-reviews/issues/6638
https://github.com/EdgeVPNio/evio
https://doi.org/10.5281/zenodo.10655929
https://jon-e.net
https://orcid.org/0000-0003-0545-5066
https://github.com/abhishektiwari
https://github.com/pradeeban
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06638


for seamless connectivity and interactions.

Features
The EdgeVPN.io software integrates the following features:

• Self-assembling and self-maintaining overlays that require only the definition of authorized
participants.

• Software-defined switching via the OpenFlow (McKeown et al., 2008) protocol and Open
vSwitch(Pfaff & Davie, 2013).

• Dynamic membership within overlays allows nodes to join or leave an active overlay.
• Concurrent active and independent layer 2 overlays within a single node.
• Hybrid overlays supporting two tunneling technologies: user-mode WebRTC (Tincan)

and kernel-mode GENEVE (Gross et al., 2020) tunnels.
• Tincan tunnels are encrypted and support ICE (Rosenberg, 2010) bootstrapping for NAT

traversal.
• GENEVE tunnels provide low latency communications with lower overheads.
• Role selection allows a node to act as a switch or pendant device anchored to a switching

node when joining an overlay.

Design

Figure 1: Fig. 1. System Overview.

The goal of EdgeVPN.io is to deliver scalable layer 2 forwarding for dynamic edge and cloud
network environments where the peer nodes act as software-defined bridges. EdgeVPN.io

integrates a Symphony (1-D Kleinberg routable small-world network (Manku et al., 2003))
topology and a decentralized layer-2 switching into a network fabric. Each node runs three
components as depicted in Figure 1: (1) the topology controller creates and maintains the
overlay, while (2) the OpenFlow layer 2 controller programs the corresponding switching rules,
and (3) Tincan, the default datapath. While each node is parameterized to be independently
tuned, they are true peers with identical functional capabilities, and each is independently
maintained by its local controllers. While there are no centralized components for overlay
management and SDN-programmed switching, it uses XMPP (Saint-Andre, 2004) for peer
authentication and messaging, and ICE for endpoint discovery and tunnel bootstrapping.

Subratie, & Figueiredo. (2024). EdgeVPN.io: Seamless Software-defined Layer 2 Virtual Networking for Edge Computing. Journal of Open Source
Software, 9(100), 6638. https://doi.org/10.21105/joss.06638.

2

https://doi.org/10.21105/joss.06638


Source Code and Packaging
EdgeVPN.io is available as an MIT-licensed open-source project hosted on GitHub. The two
primary repositories are EdgeVPNio/evio and EdgeVPNio/tincan.

Evio is the Python implementation of SDN controllers for topology, layer 2 switching, and
other auxillary functions. Tincan is the EdgeVPN.io default datapath. It is implemented in
C++ and creates the fundamental tunnel abstraction consisting of a Linux TAP device and a
WebRTC data link. Tincan requires WebRTC source code or prebuilt libraries for compiling.
The tools repo provides several scripts that assist with building and packaging.

EdgeVPN.io releases are distributed as a Debian Package for Ubuntu 20 and 22, and hosted
for installation via apt-get. A ready-to-run docker image is also hosted publicly for retrieval
using docker pull.

Acknowledgements
This material is based upon work supported by the National Science Foundation, USA under
Grants OAC-2004441, OAC-2004323, and CNS-1951816. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
Gross, J., Ganga, I., & Sridhar, T. (2020). Geneve: Generic network virtualization encapsulation

(No. 8926). RFC 8926; RFC Editor. https://doi.org/10.17487/RFC8926

Manku, G. S., Bawa, M., & Raghavan, P. (2003). Symphony: Distributed hashing in a small
world. Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4, 10–10. https://dl.acm.org/doi/10.5555/1251460.1251470

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., & Turner, J. (2008). OpenFlow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2), 69–74. https://doi.org/10.1145/1355734.1355746

Pfaff, B., & Davie, B. (2013). The open vSwitch database management protocol (No. 7047).
RFC 7047; RFC Editor. https://doi.org/10.17487/RFC7047

Rosenberg, J. (2010). Interactive connectivity establishment (ICE): A protocol for network
address translator (NAT) traversal for offer/answer protocols (No. 5245). RFC 5245; RFC
Editor. https://doi.org/10.17487/RFC5245

Saint-Andre, P. (2004). Extensible messaging and presence protocol (XMPP): core (No. 3920).
RFC 3920; RFC Editor. https://doi.org/10.17487/RFC3920

Subratie, K. (2024). EdgeVPNio/evio: Release 24.1.2.1061. Zenodo. https://doi.org/10.
5281/zenodo.10655929

Subratie, K., Aditya, S., & Figueiredo, R. J. (2023). EdgeVPN: Self-organizing layer-2
virtual edge networks. Future Generation Computer Systems, 140, 104–116. https:
//doi.org/10.1016/j.future.2022.10.007

Zhang, B., Mor, N., Kolb, J., Chan, D. S., Lutz, K., Allman, E., Wawrzynek, J., Lee, E., &
Kubiatowicz, J. (2015). The cloud is not enough: Saving IoT from the cloud. 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 15). https://dl.acm.org/doi/10.
5555/2827719.2827740

Subratie, & Figueiredo. (2024). EdgeVPN.io: Seamless Software-defined Layer 2 Virtual Networking for Edge Computing. Journal of Open Source
Software, 9(100), 6638. https://doi.org/10.21105/joss.06638.

3

https://github.com/EdgeVPNio
https://github.com/EdgeVPNio/evio
https://github.com/EdgeVPNio/tincan
https://doi.org/10.17487/RFC8926
https://dl.acm.org/doi/10.5555/1251460.1251470
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.17487/RFC7047
https://doi.org/10.17487/RFC5245
https://doi.org/10.17487/RFC3920
https://doi.org/10.5281/zenodo.10655929
https://doi.org/10.5281/zenodo.10655929
https://doi.org/10.1016/j.future.2022.10.007
https://doi.org/10.1016/j.future.2022.10.007
https://dl.acm.org/doi/10.5555/2827719.2827740
https://dl.acm.org/doi/10.5555/2827719.2827740
https://doi.org/10.21105/joss.06638

	Summary
	Statement of need
	Features
	Design
	Source Code and Packaging
	Acknowledgements
	References

