
G’MIC: An Open-Source Self-Extending Framework
for Image Processing
David Tschumperlé 1¶, Sébastien Fourey 1, and Garry Osgood2

1 GREYC Lab (IMAGE Team), CNRS, Normandie Univ, UNICAEN, ENSICAEN, F-14000 Caen,
France 2 Independent researcher, New York City, USA ¶ Corresponding author

DOI: 10.21105/joss.06618

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @jamesrhester
• @Smattr
• @NicholasSynovic

Submitted: 13 November 2023
Published: 09 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Abstract
We present G'MIC, an open-source self-extending framework that defines an original concise
scripting language for writing possibly complex image processing operators and pipelines. G'MIC

provides several user interfaces allowing for the manipulation of digital images, adapted to
different levels of user expertise, either from the command line, or as a C/C++ library, or as a
user-friendly graphical plug-in that extends the capabilities of popular digital image retouching
applications, such as GIMP, Krita, Photoshop, Affinity Photo, and others.

Keywords
Image Analysis and Processing, Scripting Language, User Interfaces.

Statement of Need

Context
Intrinsic to G'MIC’s design are means to map image processing pipelines to commands, advancing
the tool as a self-extending language. Primal command pipelines may be further assembled
into those having wider remits, these suitably named to bespeak their extended purposes and
available for succeeding command prototyping.

G'MIC is distributed under the CeCILL license. The core language projects several user interfaces
to convert, process, or visualize image datasets. Allied with the pipeline toolset, G'MIC embodies
a highly flexible image model, ranging from 1D signals to 3D+t sequences of multi-spectral
volumetric images, hence including 2D color images. This makes it a versatile tool for image
processing, with a wide range of applications in research, industrya and graphic design.

History and Motivation
The G'MIC project was initiated in 2008 by research scientists of the IMAGE team at the GREYC
laboratory, a public research lab in France. Their area of research focuses on development of
image processing algorithms.

To that end, they first began developing CImg (Tschumperle et al., 2023), beginning in 1999
and continuing to the present. CImg is an open-source C++ library for generic image processing,
which means a library that is able to address structurally diverse imagery: photographs,
multi-spectral images, medical images (MRI, X-ray, tomography, etc.), animations, among
others.

That said, CImg exhibits certain limitations for everyday research work:

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

1

https://orcid.org/0000-0003-3454-5079
https://orcid.org/0000-0001-9293-0771
https://doi.org/10.21105/joss.06618
https://github.com/openjournals/joss-reviews/issues/6618
https://github.com/GreycLab/gmic
https://doi.org/10.5281/zenodo.13936919
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/jamesrhester
https://github.com/Smattr
https://github.com/NicholasSynovic
https://creativecommons.org/licenses/by/4.0/
http://cimg.eu
https://doi.org/10.21105/joss.06618


1. When one simply wants to apply a predefined CImg algorithm to an image, one needs
to write a small, C++ program. It is only a few lines long, but still must be compiled
and linked before it can be executed. In the context of research work, such mechanics
are distractions. Being able to run those algorithms directly from the command line is
tempting.

2. Over time, a large number of these purpose-specific programs have accumulated. They
are not broadly useful for integration into CImg and have become an unruly “collection”
of specialized algorithms. By design, they cannot be easily distributed and are difficult
to maintain.

These limitations motivated G'MIC’s development in 2008. Two design objectives came to the
fore:

1. Enable pipelines of image processing algorithms that may be directly invoked from the
command line, without requiring compilation/linking steps.

2. Gather the implementation of specialized algorithms in a single location, facilitating their
evolution, maintenance and distribution.

These objectives, in combination with a desire to write new image processing pipelines and
algorithms in the most flexible and concise way possible, gave rise to the idea of self-extension.
All these objectives led initially to the development of a specialized scripting language, the
G'MIC language, and its associated interpreter.

Related Software
• Command-line Interfaces:

The CLI tool gmic was originally inspired by ImageMagick (ImageMagick Studio LLC, 2023)
and GraphicsMagick (GraphicsMagick Group, 2023), particularly the idea of being able to
manipulate digital images from a shell. The main differences between G'MIC and ImageMag-
ick/GraphicsMagick are that:

1. The type of images processed is more diverse in G'MIC.

2. The possibilities offered by the scripting languages associated with each project are more
extensive in G'MIC. This makes it possible to have conditions, loops, and multi-threaded
pipelines, without having to resort to an external scripting tool, such as sh.

• Image Filter Collections:

There are also related software packages offering predefined filters to be applied to images.
Popular examples are Mathmap (Probst, 2009), Filter Forge (Ashbrook, 2018), and Pixelitor
(Balázs-Csíki, 2023). While these software packages allow the user to create their own image
processing pipeline, their use case is restricted to the provided graphical user interfaces, with
limited scripting possibilities.

Framework Environment

Core Components
The current G'MIC framework architecture is depicted below.

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

2

https://doi.org/10.21105/joss.06618


Figure 1: Framework architecture.

It revolves around a central component: the G'MIC scripting language interpreter (yellow),
which uses the native functionalities of the CImg library (implemented in C++, blue), but relies
also on a set of commands, written in the G'MIC language themselves, constituting a standard
library (stdlib) for the framework (green). The other components (orange) stand for the
various user interfaces provided by the framework. More than 1000 distinct commands are
currently implemented, covering a large portion of image processing needs.

The interpreter lets the user implement their own scripts, for tasks as varied as writing image
filters or generative algorithms, or creating user interfaces for image manipulation.

User Interfaces
On top of the interpreter are the user interfaces. Several types of UI are implemented, adapted
to varying degrees of user expertise:

• gmic, a command-line tool to control the G'MIC interpreter from a terminal (Fig. 2).

• G’MIC-Qt, a Qt-based (Qt, 2020) graphical interface intended to be used as a plug-in
for digital image retouching software, such as GIMP, Krita, DigiKam, Photoshop, Affinity
Photo and others (Fig. 3).

• G'MIC Online, a website where users can upload color images and apply G’MIC-Qt filters
on them.

• libgmic and libcgmic, C++ and C libraries respectively, which basically provide simple
C/C++ APIs to run G'MIC pipelines on a set of input images.

• ZArt, a Qt-based interface used mainly for demonstration purposes, which applies G'MIC

filters on streamed webcam images in real-time.

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

3

https://doi.org/10.21105/joss.06618


Figure 2: The command-line interface gmic.

Figure 3: The G’MIC-Qt plug-in.

Visibility and Community
G'MIC has been developed since 2008, at the GREYC laboratory. The project web page is
https://gmic.eu. This website brings together a range of resources, from software download
links to documentation and tutorial pages.

The core features of the G'MIC interpreter are developed by David Tschumperlé and the
G’MIC-Qt plug-in by Sébastien Fourey, both being permanent researchers at GREYC. The
other contributors (for documentation, creation of new filters, or implementation of other
user interfaces) can be found on the software’s forum, hosted by Pixls.Us, an association that
promotes the use of open-source software dedicated to photography and image creation.

The G'MIC source code is available on these various GitHub repositories: gmic (interpreter),
gmic-qt (plug-in) and gmic-community (external contributions, documentation).

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

4

https://gmic.eu
https://tschumperle.users.greyc.fr/
https://foureys.users.greyc.fr/
https://discuss.pixls.us/c/software/gmic/10
https://github.com/GreycLab/gmic/
https://github.com/GreycLab/gmic-qt/
https://github.com/GreycLab/gmic-community/
https://doi.org/10.21105/joss.06618


Examples of Research Work Conducted With G'MIC

To demonstrate the utility of G'MIC for research, we provide several examples of image
processing tasks conducted using G'MIC for algorithm development and prototyping. For each
example, we reference its associated research publication.

• Patch-Based Image Inpainting:

G'MIC has been used to design and implement an original patch-based image inpainting
algorithm in (Buyssens et al., 2015) (Fig. 4).

Figure 4: Left: input image. Middle: user-defined mask. Right: result of G'MIC inpainting.

• Color LUT Compression:

We used G'MIC to handle the problem of 3D CLUTs compression, for the efficient storage of
generic color transformations (Tschumperlé et al., 2020). More than 1100 CLUTs are thus
provided in G'MIC, requiring only 4 MB of data storage (Fig. 5).

Figure 5: G'MIC color LUT compression: a CLUT (a) is analyzed, relevant keypoints are deduced and
stored (b,c). A perceptual metric ensure that the difference between original/compressed CLUTs are
imperceptible.

• Semi-automatic Colorization of Line Arts:

Colorizing line art drawings is a problem that illustrators are familiar with, as traditional digital
tools (e.g., Bucket Fill) do not always work well, e.g., when lines are anti-aliased or contain
gaps in the drawing. In (Fourey et al., 2018), we describe a “Smart coloring” algorithm,
implemented in G'MIC, that analyzes the geometry of the contours and automatically deduces
a reasonable flat-colored layer from a user-defined set of colored strokes (Fig. 6).

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

5

https://doi.org/10.21105/joss.06618


Figure 6: Color spot extrapolation for lineart colorization.

Note that this colorization algorithm has been subsequently implemented natively in GIMP
(GIMP, 2018).

• Automatic Illumination of Flat-colored Drawings:

In a similar vein, we have designed an algorithm to automatically illuminate flat-colorized
drawings by generating a light/shadow layer above a flat-colored layer (Tschumperlé et al.,
2022) (Fig. 7).

Figure 7: Left: input image, Middle-left: estimated 3D normals. Right: examples of automatic
illuminations obtained with different parameters.

• Patch-Based Image Style Transfer:

Image stylization consists of transforming an input image to give it a pictorial style close to that
of a second image (style image). In 2022, we successfully developed a patch-based multi-scale
algorithm with low algorithmic cost (Samuth et al., 2022), which is now a part of G'MIC (Fig.
8).

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

6

https://doi.org/10.21105/joss.06618


Figure 8: G'MIC style transfer. Input image (top left) is stylized according to different style images (top
row).

• Debanding of Astronomical Images:

G'MIC is used in the astronomy research community, in particular for processing images from
the James Webb Space Telescope, which exhibits band frequency noise (efficiently mitigated
with G'MIC filter Banding Denoise). G'MIC has been cited in (Ray et al., 2023), where images
from protostar HH211 were processed. One of those made the cover of Nature of October
2023 (Fig. 9).

Figure 9: Left: image of protostar, processed with G'MIC (courtesy of Mark McCaughrean/ESA). Right:
effect of the G'MIC Banding Denoise algorithm on a JWST image (courtesy of Judy Schmidt).

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

7

https://doi.org/10.21105/joss.06618


Acknowledgments
We would like to express our deepest gratitude to the developers, contributors and donors,
both regular and one-off, all over the world. We are very grateful to the “CNRS Sciences
Informatiques” institute, which helped accelerate G’MIC’s growth by funding a development
engineer for two consecutive years, and to the heads of the GREYC laboratory, who have
supported this project from the outset. We would also like to thank our amazing community of
users, who regularly provide us with beautiful/fun/innovative creations in which G’MIC filters
have been used.

In Memoriam
This article is dedicated to Sébastien Fourey, co-developer of the G’MIC project, who passed
away in October 2024. He was the kindest, most caring person you’ll ever meet, as well
as being extremely competent and passionate about computing, algorithms, and software
development as a whole. He always believed in the magic of free software. The world has lost
a talented developer, a great researcher and teacher, but above all a person of great humanity.
Rest in peace, Sébastien.

References
Ashbrook, B. (2018). Filter forge. PSA Journal, 84(2), 8–10.

Balázs-Csíki, László. (2023). Pixelitor (Version 4.3.0). https://pixelitor.sourceforge.io/index.
html

Buyssens, P., Daisy, M., Tschumperlé, D., & Lézoray, O. (2015). Exemplar-based inpainting:
Technical review and new heuristics for better geometric reconstructions. IEEE Transactions
on Image Processing, 24(6), 1809–1824. https://doi.org/10.1109/tip.2015.2411437

Fourey, S., Tschumperlé, D., & Revoy, D. (2018). A fast and efficient semi-guided algorithm
for flat coloring line-arts. International Symposium on Vision, Modeling and Visualization.

GIMP. (2018). Lineart Bucket Fill. https://developer.gimp.org/core/algorithm/
line-art-bucket-fill/

GraphicsMagick Group. (2023). GraphicsMagick (Version 1.3.40). http://www.
graphicsmagick.org/

ImageMagick Studio LLC. (2023). ImageMagick (Version 7.0.10). https://imagemagick.org

Probst, M. (2009). The MathMap image processing application (Version 1.3.5). https:
//www.complang.tuwien.ac.at/schani/mathmap/

Qt. (2020). A cross-platform software for creating graphical user interfaces (Version 5).
https://www.qt.io

Ray, T. P., McCaughrean, M. J., Caratti o Garatti, A., Kavanagh, P., Justtanont, K., Dishoeck,
E. F. van, Reitsma, M., Beuther, H., Francis, L., Gieser, C., & others. (2023). Outflows
from the youngest stars are mostly molecular. Nature, 622(7981), 48–52. https://doi.org/
10.1038/s41586-023-06551-1

Samuth, B., Tschumperlé, D., & Rabin, J. (2022). A patch-based approach for artistic style
transfer via constrained multi-scale image matching. 2022 IEEE International Conference
on Image Processing (ICIP), 3490–3494. https://doi.org/10.1109/icip46576.2022.9897334

Tschumperle, D., Tilmant, C., & Barra, V. (2023). Digital image processing with C++:
Implementing reference algorithms with the Cimg Library (1st Ed.). CRC Press. https:
//doi.org/10.1201/9781003323693

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

8

https://pixelitor.sourceforge.io/index.html
https://pixelitor.sourceforge.io/index.html
https://doi.org/10.1109/tip.2015.2411437
https://developer.gimp.org/core/algorithm/line-art-bucket-fill/
https://developer.gimp.org/core/algorithm/line-art-bucket-fill/
http://www.graphicsmagick.org/
http://www.graphicsmagick.org/
https://imagemagick.org
https://www.complang.tuwien.ac.at/schani/mathmap/
https://www.complang.tuwien.ac.at/schani/mathmap/
https://www.qt.io
https://doi.org/10.1038/s41586-023-06551-1
https://doi.org/10.1038/s41586-023-06551-1
https://doi.org/10.1109/icip46576.2022.9897334
https://doi.org/10.1201/9781003323693
https://doi.org/10.1201/9781003323693
https://doi.org/10.21105/joss.06618


Tschumperlé, D., Porquet, C., & Mahboubi, A. (2022). Automatic illumination of flat-colored
drawings by 3D augmentation of 2D silhouettes. 2022 IEEE International Conference on
Image Processing (ICIP), 371–375. https://doi.org/10.1109/icip46576.2022.9897386

Tschumperlé, D., Porquet, C., & Mahboubi, A. (2020). Reconstruction of smooth 3D
color functions from keypoints: Application to lossy compression and exemplar-based
generation of color LUTs. SIAM Journal on Imaging Sciences, 13(3), 1511–1535. https:
//doi.org/10.1137/19m1306798

Tschumperlé et al. (2025). G’MIC: An Open-Source Self-Extending Framework for Image Processing. Journal of Open Source Software, 10(105),
6618. https://doi.org/10.21105/joss.06618.

9

https://doi.org/10.1109/icip46576.2022.9897386
https://doi.org/10.1137/19m1306798
https://doi.org/10.1137/19m1306798
https://doi.org/10.21105/joss.06618

	Abstract
	Keywords
	Statement of Need
	Context
	History and Motivation
	Related Software

	Framework Environment
	Core Components
	User Interfaces
	Visibility and Community

	Examples of Research Work Conducted With G'MIC
	Acknowledgments
	In Memoriam
	References

