
Empirical: A scientific software library for research,
education, and public engagement
Anya Vostinar 4, Alexander Lalejini 8, Charles Ofria 1,2,3, Emily
Dolson 1,2,3, and Matthew Andres Moreno 4,5,6

1 BEACON Center for the Study of Evolution in Action, USA 2 Computer Science and Engineering,
Michigan State University, USA 3 Ecology, Evolutionary Biology, and Behavior, Michigan State
University, USA 4 Computer Science, Carleton College, USA 5 Ecology and Evolutionary Biology,
University of Michigan, USA 6 Center for the Study of Complex Systems, University of Michigan, USA 7
Michigan Institute for Data Science, University of Michigan, USA 8 Computer Science, Grand Valley
State University, USA

DOI: 10.21105/joss.06617

Software
• Review
• Repository
• Archive

Editor: AHM Mahfuzur Rahman

Reviewers:
• @LTLA
• @bramvandijk88

Submitted: 14 December 2023
Published: 02 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Empirical is a C++ library designed to promote open science and facilitate the development
of scientific software that is efficient, reliable, and easily distributable to researchers and
non-experts alike. Specifically, the library sets out to fulfill the following goals:

1. Utility: Empirical tools streamline common scientific computing tasks such as configura-
tion, end-to-end data management, and mathematical manipulations.

2. Efficiency: Empirical implements general-purpose data structures and algorithms that
emphasize computational efficiency to support scientific computing workloads.

3. Reliability: Empirical provides sophisticated debug-mode instrumentation including
audited memory management and safety-checked versions of standard library containers.

4. Distributability: Empirical is highly portable, uses common data formats, and facilitates
compile-to-web app development with object-oriented bindings for Emscripten/We-
bAssembly GUI elements, all with the goal of building broadly accessible scientific
software.

Statement of Need
High quality open-science tools improve code quality, scientific rigor, and ease of replication
or extension for scientific software. Empirical’s debugging suite combats C++ programming
pitfalls, such as iterator invalidation, memory leakage, and out-of-bounds indexing. Throughout,
library design achieves both performance and safety through compile-time toggling of checks
for undefined or incorrect behavior.

Unfortunately, in practice, scientific software is often difficult to obtain, install, or use. Modern
web-based interfaces give computational research the potential to better embody open science
objectives by empowering easier and more complete access (Woelfle et al., 2011). Empirical
leverages modern web technology to provide browser-based interactive interfaces for C++
source code.

Vostinar et al. (2024). Empirical: A scientific software library for research, education, and public engagement. Journal of Open Source Software,
9(98), 6617. https://doi.org/10.21105/joss.06617.

1

https://orcid.org/0000-0001-7216-5283
https://orcid.org/0000-0003-0994-2718
https://orcid.org/0000-0003-2924-1732
https://orcid.org/0000-0001-8616-4898
https://orcid.org/0000-0003-4726-4479
https://doi.org/10.21105/joss.06617
https://github.com/openjournals/joss-reviews/issues/6617
https://github.com/devosoft/Empirical/
https://doi.org/10.5281/zenodo.11420797
https://www.linkedin.com/in/mahfuzur-rahman-ahm/
https://orcid.org/0000-0002-9226-3988
https://github.com/LTLA
https://github.com/bramvandijk88
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06617


Empirical Features

Better Code for Scientific Software
Empirical components are subjected to structured code review, unit testing with coverage
tracking, and other best practices detailed in our documentation. Effort invested into optimiza-
tion of the library’s utilities enables developer-users to more easily produce safe and efficient
software, especially for new developers. We provide a template project that streamlines laying
out crosscompilation boilerplate.

As an example of Emprical’s utility, the library provides a configuration framework that includes
utilities to

• create documented configuration parameters with default values in a single line of C++
code,

• adjust parameters via configuration files, command line flags, URL query parameters, or
in-browser GUIs,

• perform on-the-fly configuration adjustments, and
• support independent configuration subsystems.

High-quality software needs a robust, inclusive, and diverse community of users and contributors.
Our development practices reflect this priority.

Realizing the Promise of Emscripten-based Web UIs
Educational editions of scientific software promote classroom learning and citizen science. The
Emscripten compiler enables an existing native codebase to additionally compile to the web
(Zakai, 2011). Browser-based delivery can yield particularly effective public-facing apps due to
easy access and compelling interfaces.

Empirical amplifies Emscripten by fleshing out its interface for interaction with browser elements.
DOM elements are bound to corresponding C++ objects (e.g., emp::Button manages a
<button> and emp::Canvas manages a <canvas>) and are easily manipulated from within
C++. Empirical also packages collections of prefabricated web widgets (e.g., configuration
managers or collapsible data displays). These tools simplify generating a mobile-friendly,
web-based GUI.

A live demo of Empirical widgets, presented alongside their source C++ code, is available here.

Runtime Efficiency
WebAssembly’s runtime efficiency — achieving 50% to 90% of native performance (Jangda
et al., 2019) — has driven adoption in web development (Haas et al., 2017) and enabled
new possibilities for browser-based scientific computation. For example, Avida-ED lever-
ages WebAssembly to incorporate sophisticated agent-based evolution models into classroom
activities.

More broadly, Empirical provides optimized tools for performance-critical tasks. For exam-
ple, emp::BitArray and emp::BitVector are faster drop-in replacements for their standard
library equivalents (std::bitset and std::vector<bool>) with extensive additional function-
ality. More fundamentally, Empirical’s header-only design prioritizes ease of use and runtime
performance, albeit at the cost of longer compilation times.

Debugging
Although performant, C++’s permissiveness to out-of-bounds indexing or memory management
errors can undermine the validity of generated data and analyses. Standard library vendors
— like libstdc++, libc++, and stl — provide some runtime safety features, but these are

Vostinar et al. (2024). Empirical: A scientific software library for research, education, and public engagement. Journal of Open Source Software,
9(98), 6617. https://doi.org/10.21105/joss.06617.

2

https://empirical.readthedocs.io/en/latest/dev/empirical-development-practices.html
https://github.com/devosoft/cookiecutter-empirical-project
https://empirical.readthedocs.io/en/latest/dev/empirical-development-practices.html
https://devosoft.github.io/empirical-prefab-demo/empirical-prefab-demo
https://avida-ed.msu.edu/
https://web.archive.org/web/20210118212109/https://gcc.gnu.org/onlinedocs/libstdc++/manual/debug_mode_using.html
https://web.archive.org/web/20210414014331/https://libcxx.llvm.org/docs/DesignDocs/DebugMode.html
https://web.archive.org/web/20210121201948/https://docs.microsoft.com/en-us/cpp/standard-library/checked-iterators?view=msvc-160
https://doi.org/10.21105/joss.06617


incomplete and poorly documented1. Empirical supplements vendor offerings with debug mode
stand-ins for standard library containers and even raw pointers that can identify memory leaks
and invalid memory access.

Developers typically compensate for C++’s missing guardrails with external toolchains like
Valgrind, GDB, and sanitizers. Although mature, such tooling suffers substantial limitations2,
particularly for WASM compiled with Emscripten. Although Emscripten provides some sanitizer
support and other debugging features, Empirical’s safety features offset remaining limitations,
such as the lack of a steppable debugger.

Outlook and Future Plans
Empirical remains under active development. Current priorities include web-friendly refinements
(e.g., file management, rich text handling) and additional step-by-step tutorials for new users.
That said, Empirical has largely converged to API stability, and releases are archived on Zenodo
for those who depend on them (Ofria et al., 2020).

Empirical already underlies major projects within digital evolution, artificial life, and genetic
programming. To benefit the broader scientific software and open science community, we look
forward to welcoming new collaborations and supporting a wider collection of end-users.

Related Software Packages
Several projects pursue objectives related to Empirical’s.

RepastHPC

RepastHPC, accessible at https://repast.github.io/, is a C++ modeling framework targeted
to high-performance computing (Collier & North, 2013; North et al., 2013). A Java-based
counterpart, Repast Simphony, provides interactive GUI support.

Boost C++ Libraries

Boost C++ Libraries, available at https://www.boost.org/, implement a broad portfolio of soft-
ware components. However, Boost lacks tools for web-based GUI, configuration management,
or data management tailored to scientific software.

Emscripten

Emscripten provides cross-compilation from C++ to WebAssembly and available at https:
//emscripten.org/ (Zakai, 2011). Empirical furnishes a complementary high-level interface to
Emscripten intrinsics.

Cheerp

Cheerp, another C++ to WebAssembly compiler, is available at https://leaningtech.com/
cheerp/. Like Emscripten, Cheerp provides primarily low-level APIs for browser interaction.

1For example, neither GCC 10.3 nor Clang 12.0.0 detect std::vector iterator invalidation when appending
to a std::vector happens to fall within existing allocated buffer space (GCC live example; Clang live example).
Clang 12.0.0’s sanitizers also fail to detect this iterator invalidation (live example).

2For example, neither GCC 10.3 nor Clang 12.0.0 detect std::vector iterator invalidation when appending
to a std::vector happens to fall within existing allocated buffer space (GCC live example; Clang live example).
Clang 12.0.0’s sanitizers also fail to detect this iterator invalidation (live example).

Vostinar et al. (2024). Empirical: A scientific software library for research, education, and public engagement. Journal of Open Source Software,
9(98), 6617. https://doi.org/10.21105/joss.06617.

3

https://web.archive.org/web/20210513071104/https://emscripten.org/docs/debugging/Sanitizers.html
https://web.archive.org/web/20210513071104/https://emscripten.org/docs/debugging/Sanitizers.html
https://web.archive.org/web/20210513070806/https://emscripten.org/docs/porting/Debugging.html
https://repast.github.io/
https://www.boost.org/
https://emscripten.org/
https://emscripten.org/
https://leaningtech.com/cheerp/
https://leaningtech.com/cheerp/
https://perma.cc/6WDU-3C8X
https://perma.cc/6SU9-CUKY
https://perma.cc/4ECQ-D5LG
https://perma.cc/6WDU-3C8X
https://perma.cc/6SU9-CUKY
https://perma.cc/4ECQ-D5LG
https://doi.org/10.21105/joss.06617


Non-C++ Comparable Software

• TinyGo
• WebIO
• GWT
• yew
• Pyodide (Droettboom & the Pyodide development team, 2021)
• Shiny (Chang et al., 2020)

Projects Using the Software
• AAGOS (Gillespie et al., 2018): model to test impact of environmental change on genetic

architecture evolution.
• Conduit (Moreno & Ofria, 2022): library for best-effort communication in high-

performance computing.
• DISHTINY (Moreno & Ofria, 2019): agent-based model to study major transitions in

evolution.
• ecology in evolutionary computation explorer (Dolson & Ofria, 2018): interactive visual-

ization of ecological interaction networks in evolutionary computation.
• Symbulation (Vostinar, 2017): agent-based model for evolution of parasitism, mutualism,

and commensalism.
• SignalGP (Lalejini & Ofria, 2018; Moreno et al., 2021): an event-driven genetic pro-

gramming substrate.
• PhylotrackPy (Dolson et al., 2024): a phylogeny-tracking tool for agent-based evolution,

closely integrated with Empirical codebase.
• Model of cancer evolution on an oxygen gradient.

Acknowledgements
This research was supported in part by NSF grants DEB-1655715 and DBI-0939454, by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1424871,
by Michigan State University through the computational resources provided by the Institute
for Cyber-Enabled Research, and by the Eric and Wendy Schmidt AI in Science Postdoctoral
Fellowship, a Schmidt Futures program. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2020). Shiny: Web application

framework for R. https://CRAN.R-project.org/package=shiny

Collier, N., & North, M. (2013). Parallel agent-based simulation with repast for high
performance computing. SIMULATION, 89(10), 1215–1235. https://doi.org/10.1177/
0037549712462620

Dolson, E., & Ofria, C. (2018). Ecological theory provides insights about evolutionary
computation. Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 105–106. https://doi.org/10.1145/3205651.3205780

Dolson, E., Rodriguez-Papa, S., & Moreno, M. A. (2024). Phylotrack: C++ and Python
libraries for in silico phylogenetic tracking. arXiv. https://doi.org/10.48550/ARXIV.2405.
09389

Droettboom, M., & the Pyodide development team. (2021). Pyodide/pyodide (Version 0.26.0)
[Computer software]. Zenodo. https://doi.org/10.5281/zenodo.5156931

Vostinar et al. (2024). Empirical: A scientific software library for research, education, and public engagement. Journal of Open Source Software,
9(98), 6617. https://doi.org/10.21105/joss.06617.

4

https://tinygo.org/
https://juliagizmos.github.io/WebIO.jl/latest/
http://www.gwtproject.org/
https://yew.rs/
https://lalejini.com/Aagos/web/Aagos.html
https://uit.readthedocs.io
https://mmore500.com/dishtiny
https://emilydolson.github.io/ecology_of_evolutionary_computation/web/interaction_networks.html
https://anyaevostinar.github.io/SymbulationEmp/web/symbulation.html
https://github.com/amlalejini/signalgp
https://github.com/emilydolson/phylotrackpy
http://emilydolson.github.io/memic_model/web/memic_model.html
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1177/0037549712462620
https://doi.org/10.1177/0037549712462620
https://doi.org/10.1145/3205651.3205780
https://doi.org/10.48550/ARXIV.2405.09389
https://doi.org/10.48550/ARXIV.2405.09389
https://doi.org/10.5281/zenodo.5156931
https://doi.org/10.21105/joss.06617


Gillespie, L., Dolson, E., Lalejini, A., & Ofria, C. (2018). Changing environments drive the
separation of genes and increased evolvability in NK-inspired landscapes. Late Breaking
Abstract at The 2018 Conference on Artificial Life.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner,
L., Zakai, A., & Bastien, J. (2017). Bringing the web up to speed with WebAssembly.
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 185–200. https://doi.org/10.1145/3062341.3062363

Jangda, A., Powers, B., Berger, E. D., & Guha, A. (2019). Not so fast: Analyzing the
performance of webassembly vs. Native code. Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, 107–120. ISBN: 9781939133038

Lalejini, A., & Ofria, C. (2018). Evolving event-driven programs with SignalGP. Proceedings
of the Genetic and Evolutionary Computation Conference on - GECCO ’18, 1135–1142.
https://doi.org/10.1145/3205455.3205523

Moreno, M. A., & Ofria, C. (2019). Toward open-ended fraternal transitions in individuality.
Artificial Life, 25(2), 117–133. https://doi.org/10.1162/artl_a_00284

Moreno, M. A., & Ofria, C. (2022). Best-effort communication improves performance and scales
robustly on conventional hardware. arXiv. https://doi.org/10.48550/ARXIV.2211.10897

Moreno, M. A., Papa, S. R., Lalejini, A., & Ofria, C. (2021). SignalGP-lite: Event driven
genetic programming library for large-scale artificial life applications. arXiv. https://doi.
org/10.48550/ARXIV.2108.00382

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., & Sydelko,
P. (2013). Complex adaptive systems modeling with repast simphony. Complex Adaptive
Systems Modeling, 1(1), 1–26. https://doi.org/10.1186/2194-3206-1-3

Ofria, C., Moreno, M. A., Dolson, E., Lalejini, A., rodsan0, Fenton, J., perryk12, Jorgensen,
S., hoffmanriley, grenewode, & al., et. (2020). Devosoft/empirical. https://doi.org/10.
5281/zenodo.2575606

Vostinar, A. E. (2017). Suicide, signals, and symbionts: Evolving cooperation in agent-based
systems [PhD thesis, Michigan State University]. ISBN: 978-0-355-07992-0

Woelfle, M., Olliaro, P., & Todd, M. H. (2011). Open science is a research accelerator. Nature
Chemistry, 3(10), 745–748. https://doi.org/10.1038/nchem.1149

Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript compiler. Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, 301–312. https://doi.org/10.1145/2048147.2048224

Vostinar et al. (2024). Empirical: A scientific software library for research, education, and public engagement. Journal of Open Source Software,
9(98), 6617. https://doi.org/10.21105/joss.06617.

5

https://doi.org/10.1145/3062341.3062363
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1145/3205455.3205523
https://doi.org/10.1162/artl_a_00284
https://doi.org/10.48550/ARXIV.2211.10897
https://doi.org/10.48550/ARXIV.2108.00382
https://doi.org/10.48550/ARXIV.2108.00382
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.5281/zenodo.2575606
https://doi.org/10.5281/zenodo.2575606
https://www.proquest.com/docview/1929231148
https://www.proquest.com/docview/1929231148
https://doi.org/10.1038/nchem.1149
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.21105/joss.06617

	Summary
	Statement of Need
	Empirical Features
	Better Code for Scientific Software
	Realizing the Promise of Emscripten-based Web UIs
	Runtime Efficiency
	Debugging

	Outlook and Future Plans
	Related Software Packages
	RepastHPC
	Boost C++ Libraries
	Emscripten
	Cheerp
	Non-C++ Comparable Software

	Projects Using the Software

	Acknowledgements
	References

