
Delta-Rice: A HDF5 Compression Plugin optimized
for Digitized Detector Data
D. G. Mathews 1,2¶, C. B. Crawford 2, S. Baeßler 1,3, N. Birge 4, L.
J. Broussard 1, F. Gonzalez 1, L. Hayen 5,6,7, A. Jezghani 2,8, H.
Li 3, R. Mammei 9,10, A. Mendelsohn 9, G. Randall 11, G. V.
Riley 12, and D. C. Schaper 2,12

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA 2 Department of Physics and Astronomy,
University of Kentucky, Lexington, KY, USA 3 Department of Physics, University of Virginia,
Charlottesvile, VA, USA 4 Department of Physics, University of Tennessee, Knoxville, TN, USA 5
Department of Physics, North Carolina State University, Raleigh, NC, USA 6 Triangle Universities
Nuclear Laboratory, Durham, NC, USA 7 Normandie University, Rouen, France 8 Georgia Institute of
Technology, Atlanta, GA, USA 9 University of Manitoba, Winnipeg, Canada 10 University of Winnipeg,
Winnipeg, Canada 11 Arizona State University, Tempe, AZ, USA 12 Los Alamos National Laboratory,
Los Alamos, NM, USA ¶ Corresponding author

DOI: 10.21105/joss.06598

Software
• Review
• Repository
• Archive

Editor: Elizabeth DuPre
Reviewers:

• @macrocosme
• @DanNixon
• @dineshchitlangia

Submitted: 21 March 2024
Published: 21 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Delta-Rice is an HDF5 (The HDF Group et al., 2020) filter plugin that was developed to
compress digitized detector signals recorded by the Nab experiment (Fry et al., 2019), a
fundamental neutron physics experiment. This is a two-step process where incoming data is
passed through a pre-processing filter and then compressed with Rice coding. A routine for
determining the optimal pre-processing filter for a dataset is provided along with an example
GPU deployment. When applied to data collected by the Nab data acquisition system, this
method produced output files 29% their initial size, and was able to do so with an average
read/write throughput in excess of 2 GB/s on a single CPU. Compared to the widely used
Gzip compression routine, Delta-Rice reduces the file size by 33% more with over an order of
magnitude increase in read/write throughput. Delta-Rice is available on CPU to users through
the HDF5 library.

Statement of Need
Many modern nuclear physics experiments, such as the Nab experiment, will produce petabytes
of data. The cost and complexity of storing such a datasets motivated the development of
a compression routine tailored specifically to the type of signals commonly recorded in these
experiments. In these experiments, any compression routine must be fast enough to support
real-time compression while also being lossless to prevent any reduction in the precision of offline
analysis. Additionally, any candidate routine must be easily accessible to the various members
of the collaboration and should not restrict users to a particular programming language to
allow for a variety of analysis methods. ‘Delta-Rice’ was designed to meet these requirements
and was implemented as an HDF5 filter plugin to ensure that each user can easily access data
with minimal additional requirements in multiple programming languages (Mathews, 2022).
While many other filter plugins exist for HDF5 files, such as Bitshuffle (Masui et al., 2015) and
Gzip, Delta-Rice offers improved throughput and reduction in data size for many experimental
efforts such as the Nab, NOPTREX (Schaper et al., 2020), and nEDM@SNS (Ahmed et al.,
2019) efforts.

Mathews et al. (2024). Delta-Rice: A HDF5 Compression Plugin optimized for Digitized Detector Data. Journal of Open Source Software, 9(98),
6598. https://doi.org/10.21105/joss.06598.

1

https://orcid.org/0000-0002-4897-4379
https://orcid.org/0000-0002-1932-4334
https://orcid.org/0000-0001-7732-9873
https://orcid.org/0000-0003-1894-5494
https://orcid.org/0000-0001-9182-2808
https://orcid.org/0000-0002-5954-4155
https://orcid.org/0000-0002-9471-0964
https://orcid.org/0000-0002-4302-4227
https://orcid.org/0000-0003-3726-9663
https://orcid.org/0009-0005-3481-4832
https://orcid.org/0000-0002-4847-2133
https://orcid.org/0000-0002-9713-8465
https://orcid.org/0000-0001-7323-8448
https://orcid.org/0000-0002-6219-650X
https://doi.org/10.21105/joss.06598
https://github.com/openjournals/joss-reviews/issues/6598
https://github.com/david-mathews-1994/deltarice
https://doi.org/10.5281/zenodo.11490673
https://elizabeth-dupre.com
https://orcid.org/0000-0003-1358-196X
https://github.com/macrocosme
https://github.com/DanNixon
https://github.com/dineshchitlangia
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06598

Algorithm Overview
This algorithm is a two-step process: the digitized signal is first passed through an encoding
operation, such as delta encoding, to de-correlate the data and prepare it for the second step of
Rice coding (Rice & Plaunt, 1971). These methods were chosen for this compression routine
specifically for their simplicity, throughput, and storage efficiency. They also do not require a
significant amount of additional information to be stored alongside the compressed data in
order for the decompression routine to function, which improves storage efficiency further.

Rice Coding
Rice coding functions by encoding a value 𝑥 in 2 pieces: 𝑞, the result of a division by a tunable
parameter 𝑚, and 𝑟, the remainder of that division. 𝑞 is stored in Unary coding, with 𝑟 in
truncated binary. In this routine, signed values are handled by interleaving positive and negative
values as follows: 𝑥′ = 2 ∗ 𝑥 for 𝑥 >= 0 and 𝑥′ = 2|𝑥| − 1 for 𝑥 < 0. Rice coding is used
instead of the more general Golomb coding (Golomb, 1966) because the restriction to powers
of 2 for 𝑚 allows for more efficient calculations. For information about the optimization of 𝑚,
see Optimization. In the case that 𝑞 >= 8, the output will be 𝑞 = 8 followed by the original
number in 16-bit signed representation. This is done to ensure that the amount a value can fail
to be compressed is fixed. The outputs from this method are packed sequentially into 32 bit
containers ensuring that no bits are wasted for any containers but the last one for a dataset.

Figure 1: A demonstration of rice coding and bit packing when writing 𝑥 = −2 and 𝑥 = 25 with 𝑚 = 8
for a 8 bit output container with a 16 bit temporary cache. Any remaining data in the temporary buffer
is retained for the next write of 𝑥, or output at the end of the compression when no more values of 𝑥 are
provided.

Preparatory Encoding
Preparatory encoding is done to adjust the dataset to a form more optimal for Rice Coding. By
default, this is done with delta encoding, which stores the difference between subsequent values.
The image below shows an example of this when applied to a signal from the Nab experiment.
A simple optimization routine for determining the ideal filter is discussed in Optimization.

Mathews et al. (2024). Delta-Rice: A HDF5 Compression Plugin optimized for Digitized Detector Data. Journal of Open Source Software, 9(98),
6598. https://doi.org/10.21105/joss.06598.

2

https://github.com/david-mathews-1994/deltarice/blob/master/docs/Optimization.md
https://github.com/david-mathews-1994/deltarice/blob/master/docs/Optimization.md
https://doi.org/10.21105/joss.06598

Figure 2: Left: A waveform before and after delta encoding. Applying Rice coding with 𝑚 = 8 on
the original signal expands the size of the waveform from 14 kB to 18.2 kB. The same Rice coding
operation on the delta encoded waveform compresses the waveform to 4.6 kB, 33% the original size.
Right: A histogram of a sample dataset before and after delta encoding. Note the clear reduction in the
distribution width and that the most probable values are centered around 0.

Implementation
Delta-Rice is accessible to users through the HDF5 library (The HDF Group et al., 2020) as
filter ID 32025. The user can specify 𝑚, the encoding filter, and the length of the smallest axis
of the data being stored 𝑙. If 𝑙 is specified and OpenMP (Dagum & Menon, 1998) is available,
then the algorithm will utilize multiple threads to compress/decompress the data. Note that
datasets written in parallel can be read by either serial or parallel decoding operations, but a
dataset written serially will be read serially unless 𝑙 was specified. For performance information
and a discussion of using this routine on GPUs and FPGAs, see Performance.

Acknowledgements
This research was sponsored by the U.S. Department of Energy (DOE), Office of Science, Office
of Nuclear Physics [contracts DE-AC05-00OR22725, DE-SC0014622, DE-FG02-03ER41258]
and National Science Foundation (NSF) [award PHY-1812367]. This research was also
sponsored by the U.S. Department of Energy, Office of Science, Office of Workforce Development
for Teachers and Scientists (WDTS) Graduate Student Research (SCGSR) program. This
research was supported in part through research cyberinfrastructure resources and services
provided by the Partnership for an Advanced Computing Environment (PACE) at the Georgia
Institute of Technology, Atlanta, Georgia, USA.

References
Ahmed, M. W., Alarcon, R., Aleksandrova, A., Baeßler, S., Barron-Palos, L., Bartoszek, L.

M., Beck, D. H., Behzadipour, M., Berkutov, I., Bessuille, J., Blatnik, M., Broering,
M., Broussard, L. J., Busch, M., Carr, R., Cianciolo, V., Clayton, S. M., Cooper, M.
D., Crawford, C., … Young, A. R. (2019). A new cryogenic apparatus to search for the
neutron electric dipole moment. Journal of Instrumentation, 14(11), P11017. https:
//doi.org/10.1088/1748-0221/14/11/P11017

Mathews et al. (2024). Delta-Rice: A HDF5 Compression Plugin optimized for Digitized Detector Data. Journal of Open Source Software, 9(98),
6598. https://doi.org/10.21105/joss.06598.

3

https://github.com/david-mathews-1994/deltarice/blob/master/docs/Performance.md
https://doi.org/10.1088/1748-0221/14/11/P11017
https://doi.org/10.1088/1748-0221/14/11/P11017
https://doi.org/10.21105/joss.06598

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1), 46–55. https://doi.org/
10.1109/99.660313

Fry, J., Alarcon, R., Baeßler, S., Balascuta, S., Palos, L. B., Bailey, T., Bass, K., Birge, N.,
Blose, A., Borissenko, D., Bowman, J. D., Broussard, L. J., Bryant, A. T., Byrne, J.,
Calarco, J. R., Caylor, J., Chang, K., Chupp, T., Cianciolo, T. V., … Zeck, B. (2019). The
Nab experiment: A precision measurement of unpolarized neutron beta decay. EPJ Web of
Conferences, 219, 04002. https://doi.org/10.1051/epjconf/201921904002

Golomb, S. (1966). Run-length encodings (corresp.). IEEE Transactions on Information Theory,
12(3), 399–401. https://doi.org/10.1109/TIT.1966.1053907

Masui, K., Amiri, M., Connor, L., Deng, M., Fandino, M., Höfer, C., Halpern, M., Hanna, D.,
Hincks, A. D., Hinshaw, G., Parra, J. M., Newburgh, L. B., Shaw, J. R., & Vanderlinde, K.
(2015). A compression scheme for radio data in high performance computing. Astronomy
and Computing, 12, 181–190. https://doi.org/10.1016/j.ascom.2015.07.002

Mathews, D. (2022). High performance data acquisition and analysis routines for the Nab
experiment [PhD thesis, University of Kentucky]. https://doi.org/10.13023/etd.2022.446

Rice, R., & Plaunt, J. (1971). Adaptive variable-length coding for efficient compression
of spacecraft television data. IEEE Transactions on Communication Technology, 19(6),
889–897. https://doi.org/10.1109/TCOM.1971.1090789

Schaper, D. C., Auton, C., Barrón-Palos, L., Borrego, M., Chavez, A., Cole, L., Crawford,
C. B., Curole, J., Dhahri, H., Dickerson, K. A., Doskow, J., Fox, W., Gervais, M. H.,
Goodson, B. M., Knickerbocker, K., Jiang, C., King, P. M., Lu, H., Mocko, M., … Visser, G.
(2020). A modular apparatus for use in high-precision measurements of parity violation in
polarized eV neutron transmission. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 969, 163961.
https://doi.org/10.1016/j.nima.2020.163961

The HDF Group, N., Koziol, Q., & Science, U. O. of. (2020). HDF5-version 1.12.0. https:
//doi.org/10.11578/dc.20180330.1

Mathews et al. (2024). Delta-Rice: A HDF5 Compression Plugin optimized for Digitized Detector Data. Journal of Open Source Software, 9(98),
6598. https://doi.org/10.21105/joss.06598.

4

https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1051/epjconf/201921904002
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1016/j.ascom.2015.07.002
https://doi.org/10.13023/etd.2022.446
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1016/j.nima.2020.163961
https://doi.org/10.11578/dc.20180330.1
https://doi.org/10.11578/dc.20180330.1
https://doi.org/10.21105/joss.06598

	Summary
	Statement of Need
	Algorithm Overview
	Rice Coding
	Preparatory Encoding

	Implementation
	Acknowledgements
	References

