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Summary
From healthcare to criminal justice, machine learning (ML) models have permeated society to
support domain experts in making decisions. Given the high-stakes nature of decision outcomes
in some real-world domains, concerns over the trustworthiness of ML model predictions have
raised increasing attention. These concerns have spurred surging research interests in explainable
artificial intelligence (XAI), whose mission is to equip end-users with an understanding (or
explanation) of AI decision making, and to help provide assessments to end-users about when
to rely on ML models and when to exercise caution.

Within the XAI domain, recourse1 has emerged as a notable technique, which provides
alternative scenarios (which lead to desirable AI decisions) to individuals adversely affected by
ML predictions, thereby elucidating the underlying decision-making mechanisms to end users.
For instance, recourse methods can provide corrective suggestions for loan applicants who
have been rejected by a bank’s ML algorithm, or give practical advice to teachers handling
students at risk of dropping out from school. Numerous recourse explanation methods have
been recently proposed. Yet, the substantial runtime overhead imposed by many recourse
explanation methods compels current research to limit their evaluation and benchmarking
to medium-sized datasets (i.e., ~50k data points). This limitation has significantly impeded
progress in the field of algorithmic recourse, while it also raises valid concerns about the
scalability of existing approaches.

To address this challenge, we propose ReLax, a JAX-based benchmarking library, designed for
efficient and scalable recourse generation. ReLax supports a variety of recourse methods and
datasets, demonstrating performance improvements of at least two orders of magnitude over
current libraries. Notably, ReLax can benchmark real-world datasets up to 10 million data
points, a 200-fold increase over existing norms, without imposing prohibitive computational
costs.

Statement of need
Recourse and counterfactual explanation methods concentrate on the generation of new
instances that lead to contrastive predicted outcomes (Karimi et al., 2022; Stepin et al., 2021;
Verma et al., 2020). Given their ability to provide actionable recourse, these explanations are
often favored by human end-users (Bhatt et al., 2020; Binns et al., 2018; Miller, 2019).

Despite progress made in counterfactual explanation research (Guo, Nguyen, et al., 2023; Guo,
Jia, et al., 2023; Mothilal et al., 2020; Upadhyay et al., 2024; Ustun et al., 2019; Vo et al.,
2023; Wachter et al., 2017), current research practices often restrict the evaluation of recourse

1Algorithmic recourse (Ustun et al., 2019) and counterfactual explanation (Wachter et al., 2017) share close
connections (Stepin et al., 2021; Verma et al., 2020), which leads us to use these terms interchangeably
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explanation methods on medium-sized datasets (with under 50k data points). This constraint
primarily stems from the excessive runtime overhead of recourse generation by existing open-
source recourse libraries (Klaise et al., 2021; Mothilal et al., 2020; Pawelczyk et al., 2021). For
instance, as shown in Figure 1, the CARLA library (Pawelczyk et al., 2021) requires roughly 30
minutes to benchmark the adult dataset (Kohavi & Becker, 1996) containing ∼ 32, 000 data
points. At this speed, because the runtime scales linearly with the number of data points, it
would take CARLA approximately 15 hours to benchmark a dataset with 1 million samples, and
nearly one week to benchmark a 10-million sized dataset. Consequently, this severe runtime
overhead hinders the large-scale analysis of recourse explanations and the research development
of new recourse methods.
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Figure 1: Runtime comparison of the adult dataset (Kohavi & Becker, 1996) between ReLax and three
open-source recourse librarires (CARLA (Pawelczyk et al., 2021), DiCE (Mothilal et al., 2020), and alibi
(Klaise et al., 2021).

In this work, we present ReLax (Recourse Explanation Library using Jax), the first recourse
explanation library in JAX (Bradbury et al., 2018; Frostig et al., 2018). Our contributions are
three-fold:

• (Fast and Scalable System) ReLax is an efficient and scalable benchmarking library for
recourse and counterfactual explanations.

• (Comprehensive set of Methods) ReLax implements 9 widely-used and popular recourse
explanation methods. In addition, ReLax includes 14 medium-sized publicly available
datasets, and one large-scale publicly available dataset.

• (Extensive Experiments) We perform comprehensive experiments on both medium-sized
and large-sized datasets, which showcases the usability and scalability of ReLax.

Efficiency and Scalability in ReLax

ReLax supports three recourse generation strategies: sequential, vectorized, and parallelized
strategy. In particular, the sequential generation strategy involves generating recourse explana-
tions one after another. Unfortunately, while widely used in existing recourse libraries (Klaise
et al., 2021; Mothilal et al., 2020; Pawelczyk et al., 2021), this strategy is inefficient when
benchmarking large datasets.

On the other hand, the vectorized and parallelized strategies play a vital role in equipping
ReLax to benchmark large-scale datasets with a practical computational cost. The vectorized
strategy takes advantage of modern hardware by applying recourse generation operations to the
entire dataset at once. This strategy considerably accelerates recourse generation by performing
Single Instruction on Multiple Data (SIMD). Additionally, the parallelized strategy enables the
usage of multiple computing devices (e.g., multiple GPUs/TPUs) to further improve scalability.
Furthermore, ReLax further enhances its performance by fusing inner recourse generation steps
via the Just-In-Time (JIT) compilation feature provided by jax. Together, ReLax ensures
efficient and scalable performance across diverse data scales and complexities.
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Recourse Methods & Datasets
ReLax implements nine recourse methods using JAX including (i) three non-parametric methods
(VanillaCF (Wachter et al., 2017), DiverseCF (Mothilal et al., 2020), GrowingSphere (Laugel
et al., 2017)); (ii) three semi-parametric methods (ProtoCF (Van Looveren & Klaise, 2021),
C-CHVAE (Pawelczyk et al., 2020), CLUE (Antoran et al., 2021)); and (iii) three parametric
methods (VAE-CF (Mahajan et al., 2019), CounterNet (Guo, Nguyen, et al., 2023), L2C (Vo
et al., 2023)).

Furthermore, we gather 14 medium-sized binary-classification tabular datasets. We also
benchmark over the forktable dataset (Ding et al., 2024) for predicting individuals’ annual
income. This US censuring dataset contains ∼ 10 million data points. To our knowledge,
this is the first attempt to benchmark a dataset at the scale of 10 million data points in the
recourse explanation community.

Van
ill

aC
F

D
iv
er

se
C
F

G
ro

w
in

g
Sp

he
re

Pro
to

C
F

C
-C

H
VA

E

C
LU

E

VA
EC

F

C
ou

nt
er

N
et

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
it

y

(a) Boxplot of validity
on medium-size datasets
for each recourse method.
High validity is desirable.
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(b) Boxplot of normalized
proximity on medium-sized
datasets. Low proximity is
preferable.
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(c) Barplot of runtime on
medium-size datasets for
each recourse method. Low
runtime is desirable.

Figure 2: Comparison of recourse method performance across 14 medium-sized datasets. It is desirable
to achieve high validity, low proximity, and low runtime.
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Figure 3: Illustration of the cost-invalidity trade-off across 14 medium-sized datasets (left) and the
forktable dataset (right) for each recourse method. Methods positioned at the bottom left are better.
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Figure 4: Runtime comparison of different recourse generation strategies on the forktable dataset (Ding
et al., 2024).

Experimental Results
Figure 2 compares the validity, proximity, and runtime achieved by nine recourse methods
averaged on 14 medium-sized datasets. In particular, validity and proximity measure the quality
of the generated counterfactual explanations. We observe that CounterNet and Growing
Sphere achieve the best validity score, and C-CHVAE achieves the best proximity score. In
terms of runtime, all recourse methods complete the entire recourse generation process within
10 seconds, while CounterNet and VAECF outperform others by finishing execution under 2
seconds.

We further analyze the validity and proximity through the lens of the cost-invalidity tradeoff
on medium-sized datasets and forktable dataset in Figure 3. It is vital to ensure that the
recourse explanation balances the trade-off between the cost of change (i.e., proximity) and
the invalidation percentage (or invalidity, which is computed as 1 - validity). We observe that
there is no definitive winner in optimally balancing this cost-invalidity trade-off, as none of the
recourse methods are positioned at the bottom left of the figure. This analysis underscores the
importance of considering both proximity and invalidity in recourse explanations, and presents
an open challenge to the research community to devise methods that optimally balance this
trade-off.

Figure 4 compares the runtime for each recourse explanation method in adopting the vectorized
and parallelized strategies on the forktable dataset (with 10M data points). First, ReLax is
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highly efficient in benchmarking the large-scale dataset, with the maximum runtime being under
30 minutes. On the other hand, by estimation, existing libraries should take at least one week
to complete recourse generation on datasets at this scale. In addition, the parallelized strategy
cuts the runtime by roughly 4X, which demonstrates ReLax’s potential in benchmarking even
larger datasets.
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