
InvertibleNetworks.jl: A Julia package for scalable
normalizing flows
Rafael Orozco1, Philipp Witte2, Mathias Louboutin3, Ali Siahkoohi4, Gabrio
Rizzuti5, Bas Peters6, and Felix J. Herrmann1

1 Georgia Institute of Technology (GT), USA 2 Microsoft Research, USA 3 Devito Codes, UK 4 Rice
University, USA 5 Shearwater GeoServices, UK 6 Computational Geosciences Inc, Canada

DOI: 10.21105/joss.06554

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @aurorarossi
• @Nando-Hegemann

Submitted: 30 November 2023
Published: 30 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Normalizing flows is a density estimation method that provides efficient exact likelihood
estimation and sampling (Dinh et al., 2014) from high-dimensional distributions. This method
depends on the use of the change of variables formula, which requires an invertible transform.
Thus normalizing flow architectures are built to be invertible by design (Dinh et al., 2014). In
theory, the invertibility of architectures constrains the expressiveness, but the use of coupling
layers allows normalizing flows to exploit the power of arbitrary neural networks, which do
not need to be invertible, (Dinh et al., 2016) and layer invertibility means that, if properly
implemented, many layers can be stacked to increase expressiveness without creating a training
memory bottleneck.

The package we present, InvertibleNetworks.jl, is a pure Julia (Bezanson et al., 2017) imple-
mentation of normalizing flows. We have implemented many relevant neural network layers,
including GLOW 1x1 invertible convolutions (Kingma & Dhariwal, 2018), affine/additive
coupling layers (Dinh et al., 2014), Haar wavelet multiscale transforms (Haar, 1909), and
Hierarchical invertible neural transport (HINT) (Kruse et al., 2021), among others. These
modular layers can be easily composed and modified to create different types of normalizing
flows. As starting points, we have implemented RealNVP, GLOW, HINT, Hyperbolic networks
(Lensink et al., 2022) and their conditional counterparts for users to quickly implement their
individual applications.

Statement of need
This software package focuses on memory efficiency. The promise of neural networks is
in learning high-dimensional distributions from data thus normalizing flow packages should
allow application to large dimensional inputs such as images or 3D volumes. Interestingly,
the invertibility of normalizing flows naturally alleviates memory concerns since intermediate
network activations can be recomputed instead of saved in memory. This greatly reduces
the memory needed during backpropagation. The problem is that directly implementing
normalizing flows in automatic differentiation frameworks such as PyTorch (Paszke et al.,
2019) will not automatically exploit this invertibility. The available packages for normalizing
flows such as Bijectors.jl (Fjelde et al., 2020), NormalizingFlows.jl (Zuheng Xu & contributors,
2023), nflows (Durkan et al., 2020), normflows (Stimper et al., 2023), and FrEIA (Ardizzone
et al., 2018-2022) are built depending on automatic differentiation frameworks and thus do
not exploit invertibility for memory efficiently.

We chose to write this package in Julia since it was built with a commitment to facilitate
interoperability with other packages for workflows in scientific machine learning (Louboutin
et al., 2022). The interoperability was facilitated by the multiple dispatch system of Julia.

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

1

https://doi.org/10.21105/joss.06554
https://github.com/openjournals/joss-reviews/issues/6554
https://github.com/slimgroup/InvertibleNetworks.jl
https://doi.org/10.5281/zenodo.12810006
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/aurorarossi
https://github.com/Nando-Hegemann
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06554


Our goal is to provide solutions for imaging problems with high degrees of freedom, where
computational speed is crucial. We have found that this software significantly benefits from
Julia’s Just-In-Time compilation technology.

Memory efficiency
By implementing gradients by hand, instead of depending completely on automatic differentia-
tion, our layers are capable of scaling to large inputs. By scaling, we mean that these codes
are not prone to out-of-memory errors when training on GPU accelerators. Indeed, previous
literature has described memory problems when using normalizing flows as their invertibility
requires the latent code to maintain the same dimensionality as the input (Khorashadizadeh et
al., 2023).

Figure 1: Our InvertibleNetworks.jl package provides memory frugal implementations of normalizing
flows. Here, we compare our implementation of GLOW with an equivalent implementation in a PyTorch
package. Using a 40GB A100 GPU, the PyTorch package can not train on image sizes larger than
480x480, while our package can handle sizes larger than 1024x1024.

In Figure 1, we show the relation between input size and the memory required for a gradient
calculation in a PyTorch normalizing flow package (normflows (Stimper et al., 2023)) as
compared to our package. The two tests were run with identical normalizing flow architectures.
We note that the PyTorch implementation quickly increases the memory load and throws an
out-of-memory error on the 40-GB A100 GPU at a spatial image size of 480x480, while our
InvertibleNetworks.jl implementation still has not run out of memory at spatial size 1024x1024.
Note that this is in the context of a typical learning routine, so the images include 3 channels
(RGB) and we used a batch size of 8.

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

2

https://doi.org/10.21105/joss.06554


Figure 2: Due to the invertibility of the normalizing flow architecture, the memory consumption does not
increase as we increase the depth of the network. Our package properly exploits this property and thus
shows constant memory consumption, whereas the PyTorch package does not.

Since traditional normalizing flow architectures need to be invertible they might be less
expressive then their non-invertible counterparts. In order to increase their expressiveness,
practitioners stack many invertible layers to increase the overall expressive power. Increasing
the depth of a neural network would in most cases increase the memory consumption of the
network but in this case, since normalizing flows are invertible, the memory consumption does
not increase. Our package displays this phenomenon as shown in Figure 2 while the PyTorch
(normflows) package, which has been implemented with automatic differentiation, does not
display this constant memory phenomenon.

Ease of use
Although the normalizing flow layer gradients are hand-written, the package is fully compatibly
with ChainRules (White et al., 2023) in order to integrate with automatic differentiation
frameworks in Julia such as Zygote (Innes et al., 2019). This integration allows users
to add arbitrary neural networks which will be differentiated by automatic differentiation
while the memory bottleneck created by normalizing flow gradients will be dealt with by
InvertibleNetworks.jl. The typical use case for this combination are the summary networks
used in amortized variational inference such as BayesFlow (Radev et al., 2020), which is also
implemented in our package.

All implemented layers are tested for invertibility and correctness of their gradients with
continuous integration testing via GitHub actions. There are many examples for layers,
networks and application workflows allowing new users to quickly build networks for a variety
of applications. The ease of use is demonstrated by the publications that made use of the
package.

Many publications have used InvertibleNetworks.jl for diverse applications including change
point detection, (Peters, 2022), acoustic data denoising (Kumar et al., 2021), seismic imaging
(Alemohammad et al., 2023; Louboutin et al., 2023; Rizzuti et al., 2020; Siahkoohi et al.,
2021, 2022, 2023), fluid flow dynamics (Yin et al., 2023), medical imaging (Orozco, Siahkoohi,
Rizzuti, et al., 2023; Orozco et al., 2021; Orozco, Louboutin, et al., 2023; Orozco, Siahkoohi,
Louboutin, et al., 2023), and monitoring CO2 for combating climate change (Gahlot et al.,
2023).

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

3

https://doi.org/10.21105/joss.06554


Future work
The neural network primitives (convolutions, non-linearities, pooling etc) are implemented in
NNlib.jl abstractions, thus support for AMD, Intel, and Apple GPUs can be trivially extended.
Also, while our package can currently handle 3D inputs and has been used on large volume-
based medical imaging (Orozco et al., 2022), there are interesting avenues of research regarding
the “channel explosion” seen in invertible down and upsampling used in invertible networks
(Peters et al., 2019).

Acknowledgements
The development of this package was carried out with the support of Georgia Research
Alliance and partners of the ML4Seismic Center. This was also supported in part by the
US National Science Foundation grant OAC 2203821 and the Department of Energy grant
No. DE-SC0021515.

References
Alemohammad, S., Casco-Rodriguez, J., Luzi, L., Humayun, A. I., Babaei, H., LeJeune, D.,

Siahkoohi, A., & Baraniuk, R. G. (2023). Self-consuming generative models go mad. arXiv
Preprint arXiv:2307.01850. https://doi.org/10.52591/lxai202312101

Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., & Sorrenson, P.
(2018-2022). Framework for easily invertible architectures (FrEIA). https://github.com/
vislearn/FrEIA

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components
estimation. arXiv Preprint arXiv:1410.8516. https://doi.org/10.48550/arXiv.1410.8516

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv
Preprint arXiv:1605.08803. https://doi.org/10.48550/arXiv.1605.08803

Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2020). nflows: Normalizing flows in
PyTorch (Version v0.14). Zenodo. https://doi.org/10.5281/zenodo.4296287

Fjelde, T. E., Xu, K., Tarek, M., Yalburgi, S., & Ge, H. (2020). Bijectors. Jl: Flexible
transformations for probability distributions. Symposium on Advances in Approximate
Bayesian Inference, 1–17.

Gahlot, A. P., Erdinc, H. T., Orozco, R., Yin, Z., & Herrmann, F. J. (2023). Inference of
CO2 flow patterns–a feasibility study. arXiv Preprint arXiv:2311.00290. https://doi.org/10.
48550/arXiv.2311.00290

Haar, A. (1909). Zur theorie der orthogonalen funktionensysteme. Georg-August-Universitat,
Gottingen. https://doi.org/10.1007/bf01456927

Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B., & Tebbutt, W.
(2019). A differentiable programming system to bridge machine learning and scientific
computing. arXiv Preprint arXiv:1907.07587. https://doi.org/10.48550/arXiv.1907.07587

Khorashadizadeh, A., Kothari, K., Salsi, L., Harandi, A. A., Hoop, M. de, & Dokmanić, I. (2023).
Conditional injective flows for Bayesian imaging. IEEE Transactions on Computational
Imaging, 9, 224–237. https://doi.org/10.1109/tci.2023.3248949

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems, 31.

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

4

https://doi.org/10.52591/lxai202312101
https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
https://doi.org/10.1137/141000671
https://doi.org/10.48550/arXiv.1410.8516
https://doi.org/10.48550/arXiv.1605.08803
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.48550/arXiv.2311.00290
https://doi.org/10.48550/arXiv.2311.00290
https://doi.org/10.1007/bf01456927
https://doi.org/10.48550/arXiv.1907.07587
https://doi.org/10.1109/tci.2023.3248949
https://doi.org/10.21105/joss.06554


Kruse, J., Detommaso, G., Köthe, U., & Scheichl, R. (2021). HINT: Hierarchical invertible
neural transport for density estimation and Bayesian inference. Proceedings of the AAAI
Conference on Artificial Intelligence, 35, 8191–8199. https://doi.org/10.1609/aaai.v35i9.
16997

Kumar, R., Kotsi, M., Siahkoohi, A., & Malcolm, A. (2021). Enabling uncertainty quantification
for seismic data preprocessing using normalizing flows (NF)—an interpolation example.
First International Meeting for Applied Geoscience & Energy, 1515–1519. https://doi.org/
10.1190/segam2021-3583705.1

Lensink, K., Peters, B., & Haber, E. (2022). Fully hyperbolic convolutional neural net-
works. Research in the Mathematical Sciences, 9(4), 60. https://doi.org/10.1007/
s40687-022-00343-1

Louboutin, M., Witte, P., Siahkoohi, A., Rizzuti, G., Yin, Z., Orozco, R., & Herrmann, F.
J. (2022). Accelerating innovation with software abstractions for scalable computational
geophysics. Second International Meeting for Applied Geoscience & Energy, 1482–1486.
https://doi.org/10.1190/image2022-3750561.1

Louboutin, M., Yin, Z., Orozco, R., Grady, T. J., Siahkoohi, A., Rizzuti, G., Witte, P. A.,
Møyner, O., Gorman, G. J., & Herrmann, F. J. (2023). Learned multiphysics inversion
with differentiable programming and machine learning. The Leading Edge, 42(7), 474–486.
https://doi.org/10.1190/tle42070474.1

Orozco, R., Louboutin, M., & Herrmann, F. J. (2022). Memory efficient invertible neural
networks for 3D photoacoustic imaging. arXiv Preprint arXiv:2204.11850. https://doi.org/
10.48550/arXiv.2204.11850

Orozco, R., Louboutin, M., Siahkoohi, A., Rizzuti, G., Leeuwen, T. van, & Herrmann, F. (2023).
Amortized normalizing flows for transcranial ultrasound with uncertainty quantification.
arXiv Preprint arXiv:2303.03478. https://doi.org/10.48550/arXiv.2303.03478

Orozco, R., Siahkoohi, A., Louboutin, M., & Herrmann, F. J. (2023). Refining amor-
tized posterior approximations using gradient-based summary statistics. arXiv Preprint
arXiv:2305.08733. https://doi.org/10.48550/arXiv.2305.08733

Orozco, R., Siahkoohi, A., Rizzuti, G., Leeuwen, T. van, & Herrmann, F. J. (2023). Ad-
joint operators enable fast and amortized machine learning based Bayesian uncertainty
quantification. Medical Imaging 2023: Image Processing, 12464, 357–367. https:
//doi.org/10.1117/12.2651691

Orozco, R., Siahkoohi, A., Rizzuti, G., Leeuwen, T. van, & Herrmann, F. J. (2021). Photoa-
coustic imaging with conditional priors from normalizing flows. NeurIPS 2021 Workshop
on Deep Learning and Inverse Problems.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems, 32.
https://doi.org/10.48550/arXiv.1912.01703

Peters, B. (2022). Point-to-set distance functions for output-constrained neural networks.
Journal of Applied & Numerical Optimization, 4(2). https://doi.org/10.23952/jano.4.2022.
2.05

Peters, B., Haber, E., & Lensink, K. (2019). Symmetric block-low-rank layers for fully reversible
multilevel neural networks. arXiv Preprint arXiv:1912.12137. https://doi.org/10.48550/
arXiv.1912.12137

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Köthe, U. (2020). BayesFlow:
Learning complex stochastic models with invertible neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(4), 1452–1466. https://doi.org/10.1109/tnnls.

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

5

https://doi.org/10.1609/aaai.v35i9.16997
https://doi.org/10.1609/aaai.v35i9.16997
https://doi.org/10.1190/segam2021-3583705.1
https://doi.org/10.1190/segam2021-3583705.1
https://doi.org/10.1007/s40687-022-00343-1
https://doi.org/10.1007/s40687-022-00343-1
https://doi.org/10.1190/image2022-3750561.1
https://doi.org/10.1190/tle42070474.1
https://doi.org/10.48550/arXiv.2204.11850
https://doi.org/10.48550/arXiv.2204.11850
https://doi.org/10.48550/arXiv.2303.03478
https://doi.org/10.48550/arXiv.2305.08733
https://doi.org/10.1117/12.2651691
https://doi.org/10.1117/12.2651691
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.23952/jano.4.2022.2.05
https://doi.org/10.23952/jano.4.2022.2.05
https://doi.org/10.48550/arXiv.1912.12137
https://doi.org/10.48550/arXiv.1912.12137
https://doi.org/10.1109/tnnls.2020.3042395
https://doi.org/10.1109/tnnls.2020.3042395
https://doi.org/10.21105/joss.06554


2020.3042395

Rizzuti, G., Siahkoohi, A., Witte, P. A., & Herrmann, F. J. (2020). Parameterizing uncer-
tainty by deep invertible networks: An application to reservoir characterization. SEG
International Exposition and Annual Meeting, D031S057R006. https://doi.org/10.1190/
segam2020-3428150.1

Siahkoohi, A., Orozco, R., Rizzuti, G., & Herrmann, F. J. (2022). Wave-equation-based
inversion with amortized variational Bayesian inference. arXiv Preprint arXiv:2203.15881.
https://doi.org/10.48550/arXiv.2203.15881

Siahkoohi, A., Rizzuti, G., Louboutin, M., Witte, P. A., & Herrmann, F. J. (2021). Precon-
ditioned training of normalizing flows for variational inference in inverse problems. arXiv
Preprint arXiv:2101.03709. https://doi.org/10.48550/arXiv.2101.03709

Siahkoohi, A., Rizzuti, G., Orozco, R., & Herrmann, F. J. (2023). Reliable amortized variational
inference with physics-based latent distribution correction. Geophysics, 88(3), R297–R322.
https://doi.org/10.1190/geo2022-0472.1

Stimper, V., Liu, D., Campbell, A., Berenz, V., Ryll, L., Schölkopf, B., & Hernández-Lobato,
J. M. (2023). Normflows: A PyTorch package for normalizing flows. arXiv Preprint
arXiv:2302.12014. https://doi.org/10.21105/joss.05361

White, F., Abbott, M., Zgubic, M., Revels, J., Axen, S., Arslan, A., Schaub, S., Robinson,
N., Ma, Y., Sam, Dhingra, G., Tebbutt, W., Widmann, D., Heim, N., Schmitz, N.,
Rackauckas, C., Lucibello, C., Fischer, K., Heintzmann, R., … Wennberg, D. (2023).
JuliaDiff/ChainRules.jl: v1.58.0 (Version v1.58.0). Zenodo. https://doi.org/10.5281/
zenodo.10100624

Yin, Z., Orozco, R., Louboutin, M., & Herrmann, F. J. (2023). Solving multiphysics-based in-
verse problems with learned surrogates and constraints. Advanced Modeling and Simulation
in Engineering Sciences, 10(1), 14. https://doi.org/10.1186/s40323-023-00252-0

Zuheng Xu, T. E. F., Xianda Sun, & contributors. (2023). NormalizingFlows.jl (Version
v0.1.0). https://github.com/TuringLang/NormalizingFlows.jl

Orozco et al. (2024). InvertibleNetworks.jl: A Julia package for scalable normalizing flows. Journal of Open Source Software, 9(99), 6554.
https://doi.org/10.21105/joss.06554.

6

https://doi.org/10.1109/tnnls.2020.3042395
https://doi.org/10.1109/tnnls.2020.3042395
https://doi.org/10.1109/tnnls.2020.3042395
https://doi.org/10.1190/segam2020-3428150.1
https://doi.org/10.1190/segam2020-3428150.1
https://doi.org/10.48550/arXiv.2203.15881
https://doi.org/10.48550/arXiv.2101.03709
https://doi.org/10.1190/geo2022-0472.1
https://doi.org/10.21105/joss.05361
https://doi.org/10.5281/zenodo.10100624
https://doi.org/10.5281/zenodo.10100624
https://doi.org/10.1186/s40323-023-00252-0
https://github.com/TuringLang/NormalizingFlows.jl
https://doi.org/10.21105/joss.06554

	Summary
	Statement of need
	Memory efficiency
	Ease of use
	Future work
	Acknowledgements
	References

