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Summary
Lower Fidelity Dynamic Models (LFDM) is a library of dynamics models for on-road wheeled
vehicles that is written in C++ and CUDA and wrapped to Python using SWIG. Each model
is described as a set of Ordinary Differential Equations (ODEs) that take a driver input -
a normalized throttle between 0 and 1, a normalized steering between -1 and 1 (with -1
representing max steering toward a left turn), and a normalized braking input between 0 and 1,
and subsequently advance the state of the vehicle (its position and velocity) forward in time.

In mathematical notation, these ODEs are of second order and are expressed as

ẍ = 𝑓(x, ̇x,u,P) ,

where x ∈ ℝ𝑑 is the 𝑑 dimensional state of the vehicle, u ∈ ℝ3 contains the driver inputs, and
P ∈ ℝ𝑘 contains the 𝑘 model parameters. The ODEs evolving the vehicle dynamics models
are cast as an Initial Value Problem (IVP) by providing an initial state x. The solution is found
using implicit or semi-implicit numerical integration methods.

The LFDM library contains three dynamic vehicle models, differentiated by their Degrees of
Freedom (DoF) counts: 11 DoF, 18 DoF, and 24 DoF. Each can be run on the CPU or an
NVIDIA GPU.

11 DoF Model: This is a foundational, single-track model with two wheels, primarily employed
in controller design. In the literature, it is also known as the bicycle model. It features a rigid
chassis with three DoFs at the Center of Mass (CM) – yaw, lateral, and longitudinal. The
model includes a kinematic driveline, integrating a map-based engine and torque converter,
gearbox, and a differential that enables transfer of torque to the wheels. The vehicle model
can use one of the two versions of the TMeasy non-linear tire model (Hirschberg et al., 2002)
for traction-force generation. A steering input is converted to a front wheel angle through a
steering map.

18 DoF Model: A step above the simple 11 DoF model, this double-track model includes
four wheels and introduces a roll DoF, enriching the chassis’ dynamics. The model shares
the driveline structure with the 11 DoF model but adds front and rear differentials for torque
distribution across wheels (see Figure 1). The steering map in this model simultaneously
changes the orientation of the front left and right wheels by the same angle. The other model
subsystems are identical to those of the 11 DoF model.

24 DoF Model: This model incorporates all the features of the 18 DoF and extends the DoF
count in order to predict vehicle heave and pitch motions. As such, it captures the chassis’
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six DoFs: lateral, longitudinal, vertical, yaw, roll, and pitch. Additionally, the model includes
a DoF at each corner for vertical suspension travel. Subsystems, excluding the suspension
aspect, are identical to the 18 DoF model.

Figure 1: A flow chart of the torques (blue arrows) and angular velocities (red arrows) that are exchanged
all across the drive line. An overview of the symbols is provided below.

Symbol Description
𝐽𝑖𝑛 Motor input shaft inertia (𝑘𝑔 ⋅ 𝑚2)
𝑇 Torque Ratio (-)
𝑔 Current gear ratio (-)
𝑇 Torque Ratio (-)
𝜂 Differential split (-)

These models have their own sets of customizable features, which are set based on user
preferences. For example, the inclusion of the torque converter can be modified, and drivetrain
configurations such as four-wheel drive (4WD), rear-wheel drive (RWD), or front-wheel drive
(FWD) can be selected and adjusted through parameter configurations in a JSON file, offering
flexibility to suit various simulation requirements.

In this paper, we present a Statement of need, describing in what applications these models are
most useful. In the LFDM Accuracy section, we present a comparison of the LFDM library’s
accuracy with the High-Fidelity Vehicle Model, Chrono::Vehicle (Serban et al., 2019). We then
demonstrate in the LFDM Speed and Scaling section that the LFDMs, while closely matching
the accuracy of Chrono::Vehicle, operate approximately 3000 times faster. Additionally, by
utilizing the GPU version of the models, it is possible to simulate about 300,000 vehicles in
real-time, i.e., simulating one second of dynamics for 300,000 vehicles takes only one real-world
second. Further details on the model formulation are available in Chapter 2 of Unjhawala
(2023). Therein, the users can find the actual equations of motion, for each of the three
models.
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Statement of need
The open-source vehicle models in LFDM aim to provide accurate vehicle simulations that
exceed real-time speeds ideal for state estimation, control, reinforcement learning, and traffic
simulation, with or without a human in the loop. Informed by existing models in the literature
(Jin et al., 2019; Kong et al., 2015; Pepy et al., 2006), they go beyond the state of the art to
introduce additional benefits tailored for faster-than-real-time applications.

1. In the domain literature, the focus is on simplistic single-track models with linear tires
or fully kinematic models for their speed, despite a trade-off in accuracy. Jiechao Liu
& Ersal (2016) found that while a double-track model with non-linear tires is more
accurate, its Real Time Factor (RTF - the time required to simulate one second of
vehicle dynamics) of 1 and higher limits its use in Control stacks. The LFDM library,
with efficient C++ coding, offers faster-than-real-time (RTF<1) double-track models
with accurate non-linear tires and realistic subsystems, including drivelines, engines, and
torque converters.

2. The existing state of the art for open-source vehicle models lacks documentation,
hindering their use by researchers. Where open-source options exist, models of varying
fidelity are scattered across multiple repositories. The LFDM library addresses this by
providing a centralized source for researchers to access and select vehicle models of
different fidelities, tailored to their specific speed-accuracy requirements and hardware
capabilities.

3. To the best of our knowledge, there is currently no open-source software capable of
executing large-scale, parallel simulations of on-road vehicle dynamics on GPUs. LFDM
bridges this gap, facilitating the real-time simulation of nearly 300,000 vehicles. This
capability significantly enhances the potential for large-scale reinforcement learning and
comprehensive traffic simulations.

4. Vehicle models in literature typically use explicit numerical integration solvers for solving
the associated equations of motion, but these display lackluster performance for non-
linear, stiff ODEs (Ascher & Petzold, 1998). The LFDM library addresses this by
offering two efficient time steppers: a semi-implicit solver with constant time-stepping
for real-time simulations, and an implicit solver with adaptive time-stepping via Sundials
(Hindmarsh et al., 2005). While the Sundials solver, due to its adaptive time-stepping
nature, is slower and unsuitable for faster-than-real-time simulation, it ensures stability
and supports Forward Sensitivity Analysis (FSA). Both solvers also generate system RHS
Jacobians 𝜕𝑓

𝜕x and 𝜕𝑓
𝜕u , which are the cornerstone of gradient-based Model Predictive

Control (MPC) methods.

5. Commercial platforms like MSC Adams and MATLAB provide vehicle models of varying
fidelities, complete with benchmarks. However, their closed-source nature limits the
integration of these models into control stacks unless the same tools are employed
throughout.

LFDM Accuracy
To assess the LFDM library’s accuracy, we used the high-fidelity Chrono::Vehicle simulator
to generate “ground-truth’’ data for its Sedan vehicle, which is a Chrono digital twin of the
Audi A3. Each LFDM was then calibrated through a Bayesian Inference framework (Unjhawala
et al., 2023) to approximate the dynamics (time evolution) of the Chrono::Vehicle digital
twin. We conducted five throttle and steering maneuvers, varying throttle levels and steering
directions, to calibrate the LFDMs. These maneuvers, ranging from 30 km/h to 65 km/h,
helped fine-tune parameters for various turn speeds and calibrate engine and steering maps.

Post-calibration, we tested the LFDMs in two scenarios: a high-speed 90 km/h acceleration
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and a 40 km/h double lane change, following ISO 3888-2 standards using a PID controller for
the latter. The tests applied the same control inputs to both the Sedan and LFDMs. Results,
illustrated in Figure 2 and Figure 3, reveal that the 24 DoF and 18 DoF models closely mimic
the Sedan’s dynamics, outperforming the commonly used 11 DoF model. However, in the
straight-line acceleration test, the Chrono::Vehicle Sedan exhibited non-zero yaw and lateral
velocities due to engine reaction torque, a detail not captured by the LFDMs. The LFDMs’
accuracy was also compared against other vehicle types like the US Army’s HMMWV, as
detailed in Chapter five of Unjhawala (2023).

Figure 2: The LFDMs integrated using the semi-implicit solver with a time step of 1𝑒−3 compared to a
high-fidelity Chrono::Vehicle simulation of a Sedan integrated at a time step of 1𝑒−4 for a high speed
acceleration maneuver.
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Figure 3: The LFDMs integrated using the semi-implicit solver with a time step of 1𝑒−3 compared to a
high-fidelity Chrono::Vehicle simulation of a Sedan integrated at a time step of 1𝑒−4 for a ISO standard
double lane change maneuver.

LFDM Speed and Scaling
To demonstrate the computational speed of the LFDMs, we benchmarked them against
Chrono::Vehicle. A 10-second acceleration maneuver was simulated for both, and the RTF was
registered. Both systems used a 1𝑒−3 time step, with the LFDMs employing a semi-implicit
integrator and Chrono::Vehicle using its standard Differential Algebraic Equation (DAE) solver.
The results, summarized in the table below, show that the LFDMs, when optimized with O3
and run on a 13th Gen Intel(R) Core(TM) i7-13700K, are at least 2000 times faster than
real-time.

Model Simulation time (ms) Run time (ms) RTF 1/𝑅𝑇𝐹
Chrono::Vehicle 10,000 5134.29 ± 72 5.1𝑒−1 2
24 DoF 10,000 3.67 ± 0.0003 3.6𝑒−3 2720
18 DoF 10,000 2.6 ± 0.0006 2.6𝑒−3 3835
11 DoF 10,000 1.5 ± 0.0002 1.5𝑒−3 6461

Further, the GPU version of the LFDMs enables large-scale parallel simulation, which comes
into play in Reinforcement Learning and traffic simulation. As shown in Figure 4, around
330,000 11DoF vehicle models can be simulated on an NVIDIA A100 GPU with an RTF of 1.
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Figure 4: Scaling analysis of the GPU versions of the LFDMs shows that about 330,000 11 DoF vehicles
can be simulated in Real-Time.
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