
IKPLS: Improved Kernel Partial Least Squares and
Fast Cross-Validation Algorithms for Python with CPU
and GPU Implementations Using NumPy and JAX
Ole-Christian Galbo Engstrøm 1,2,3¶, Erik Schou Dreier 1, Birthe Møller
Jespersen 4, and Kim Steenstrup Pedersen 2,5

1 FOSS Analytical A/S, Denmark 2 Department of Computer Science (DIKU), University of
Copenhagen, Denmark 3 Department of Food Science (UCPH FOOD), University of Copenhagen,
Denmark 4 UCL University College, Denmark 5 Natural History Museum of Denmark (NHMD),
University of Copenhagen, Denmark ¶ Corresponding author

DOI: 10.21105/joss.06533

Software
• Review
• Repository
• Archive

Editor: Sébastien Boisgérault
Reviewers:

• @parmentelat
• @basileMarchand

Submitted: 25 January 2024
Published: 23 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The ikpls software package provides fast and efficient tools for PLS (Partial Least Squares)
modeling. This package is designed to help researchers and practitioners handle PLS modeling
faster than previously possible - particularly on large datasets. The PLS implementations in
ikpls use the fast IKPLS (Improved Kernel PLS) algorithms (Dayal & MacGregor, 1997),
providing a substantial speedup compared to scikit-learn’s (Pedregosa et al., 2011) PLS
implementation, which is based on NIPALS (Nonlinear Iterative Partial Least Squares) (H.
Wold, 1966). The ikpls package also offers an implementation of IKPLS combined with
the fast cross-validation algorithm by O.-C. G. Engstrøm (2024), significantly accelerating
cross-validation of PLS models - especially when using a large number of cross-validation splits.

ikpls offers NumPy-based CPU and JAX-based CPU/GPU/TPU implementations. The
JAX implementations are also differentiable, allowing seamless integration with deep learning
techniques. This versatility enables users to handle diverse data dimensions efficiently.

In conclusion, ikpls empowers researchers and practitioners in machine learning, chemometrics,
and related fields with efficient, scalable, and end-to-end differentiable tools for PLS modeling,
facilitating optimal component selection and preprocessing decisions by offering implementations
of

1. both variants of IKPLS for CPUs;
2. both variants of IKPLS for GPUs, both of which are end-to-end differentiable, allowing

integration with deep learning models;
3. IKPLS combined with a cross-validation algorithm that yields a substantial speedup

compared to the classical cross-validation algorithm.

Statement of need
PLS (H. Wold, 1966) is a standard method in machine learning and chemometrics. PLS
can be used as a regression model, PLS-R (PLS regression) (S. Wold et al., 1983, 2001), or
a classification model, PLS-DA (PLS discriminant analysis) (Barker & Rayens, 2003). PLS
takes as input a matrix X with dimension (𝑁,𝐾) of predictor variables and a matrix Y with
dimension (𝑁,𝑀) of response variables. PLS decomposes X and Y into 𝐴 latent variables
(also called components), which are linear combinations of the original X and Y. Choosing
the optimal number of components, 𝐴, depends on the input data and varies from task to task.
Additionally, selecting the optimal preprocessing method is challenging to assess before model

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

1

https://orcid.org/0000-0002-7906-4589
https://orcid.org/0000-0001-9784-7504
https://orcid.org/0000-0002-8695-1450
https://orcid.org/0000-0003-3713-0960
https://doi.org/10.21105/joss.06533
https://github.com/openjournals/joss-reviews/issues/6533
https://github.com/Sm00thix/IKPLS
https://doi.org/10.5281/zenodo.12794521
https://github.com/boisgera
https://orcid.org/0000-0003-4685-8099
https://github.com/parmentelat
https://github.com/basileMarchand
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06533


validation Sørensen et al. (2021) but is required for achieving optimal performance (Du et al.,
2022). The optimal number of components and the optimal preprocessing method are typically
chosen by cross-validation, which may be very computationally expensive. The implementations
of the fast cross-validation algorithm (O.-C. G. Engstrøm, 2024) will significantly reduce the
computational cost of cross-validation.

This work introduces the Python software package, ikpls, with novel, fast implementations of
IKPLS Algorithm #1 and Algorithm #2 by Dayal & MacGregor (1997), which have previously
been compared with other PLS algorithms and shown to be fast (Alin, 2009) and numerically
stable (Andersson, 2009). The implementations introduced in this work use NumPy (Harris et
al., 2020) and JAX (Bradbury et al., 2018). The NumPy implementations can be executed
on CPUs, and the JAX implementations can be executed on CPUs, GPUs, and TPUs. The
JAX implementations are also end-to-end differentiable, allowing integration into deep learning
methods. This work compares the execution time of the implementations on input data
of varying dimensions. It reveals that choosing the implementation that best fits the data
will yield orders of magnitude faster execution than the common NIPALS (H. Wold, 1966)
implementation of PLS, which is the one implemented by scikit-learn (Pedregosa et al., 2011),
an extensive machine learning library for Python. With the implementations introduced in this
work, choosing the optimal number of components and the optimal preprocessing becomes
much more feasible than previously. Indeed, derivatives of this work have previously been
applied to do this precisely (O.-C. G. Engstrøm et al., 2023a, 2023b).

Other implementations of other PLS algorithms with NumPy and scikit-learn exist, even for more
specialized tasks such as multiblock PLS (Baum & Vermue, 2019). These implementations,
however, are not as fast as IKPLS (Alin, 2009). Implementations of IKPLS exist in R and
MATLAB. To the best of the authors’ knowledge, however, there are no Python implementations
of IKPLS that simultaneously correctly handle all possible dimensions of X and Y. To the
best of the authors’ knowledge, no other PLS algorithms exist in JAX, nor do implementations
of IKPLS in other frameworks with automatic differentiation.

Implementations
IKPLS (Dayal & MacGregor, 1997) comes in two variants: Algorithm #1 and Algorithm #2.
The implementations compute internal matrices W (X weights) of dimension (K, A), P (X
loadings) of dimension (K, A), Q (Y loadings) of dimension (M, A), R (X rotations) of
dimension (K, A) and a tensor B (regression coefficients) of dimension (A, K, M). Algorithm
#1 also computes T (X scores) of dimension (𝑁,𝐴).

The ikpls package has been rigorously tested for equivalence against scikit-learn’s NIPALS
using NIR spectra data from Dreier et al. (2022) and scikit-learn’s PLS test-suite. Examples
are provided for core functionalities, demonstrating fitting, predicting, cross-validating on CPU
and GPU, and gradient propagation through PLS fitting.

NumPy
ikpls includes a Python class implementing both NumPy-based CPU IKPLS algorithms. It sub-
classes scikit-learn’s BaseEstimator, facilitating integration with functions like cross_validate.
Another class with IKPLS and fast cross-validation (O.-C. G. Engstrøm, 2024) is available.

JAX
For GPU/TPU acceleration, ikpls provides Python classes for each IKPLS algorithm using
JAX. JAX combines Autograd (Maclaurin et al., 2015) with XLA (Accelerated Linear Algebra)
for high-performance computation on various hardware. Automatic differentiation in forward
and backward modes enables seamless integration with deep learning techniques, supporting
user-defined metric functions.

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

2

https://github.com/Sm00thix/IKPLS/blob/main/examples/
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
https://www.tensorflow.org/xla
https://doi.org/10.21105/joss.06533


Benchmarks
Benchmarks compare ikpls implementations with scikit-learn’s NIPALS across varying data
dimensions and component numbers. Single fits and leave-one-out cross-validation (LOOCV)
scenarios are explored. To estimate execution time in a realistic scenario, the reported execution
times for LOOCV include calibration of the PLS models and computation of the root mean
squared error on the validation sample for all components from 1 to A.

The benchmarks use randomly generated data with fixed seeds for consistency. Default
parameters are 𝑁 = 10, 000, 𝐾 = 500, and 𝐴 = 30, testing both single-target (PLS1) and
multi-target (PLS2) scenarios.

The results in Figure 1 suggest CPU IKPLS for single fits, with a preference for IKPLS #2
if 𝑁 ≫ 𝐾. GPU usage is advised for larger datasets. In cross-validation, IKPLS options
consistently outperform scikit-learn’s NIPALS, with CPU IKPLS #2 (fast cross-validation)
excelling, especially for large datasets. GPU IKPLS #1 is optimal in specific cases, considering
preprocessing constraints. Fast cross-validation delivers significant speedup, more pronounced
for IKPLS #2, especially when dealing with a larger number of target variables (𝑀) (O.-C. G.
Engstrøm, 2024).

In an attempt to give guidelines for algorithm choice for the most common use cases, we report
the execution time of the implementations with varying values for each of the parameters
above. Specifically, we define a list of values for each parameter to take while the rest of the
parameters maintain their default settings. We use

𝑁 ∈ [101, 102, 103, 104, 105, 106], 𝐾 ∈ [30, 50, 102, 5 ⋅ 102, 103, 5 ⋅ 103, 104], 𝐴 ∈
[10, 20, 30, 50, 100, 200, 500], and 𝑀 ∈ [1, 10].

All the experiments are executed on the hardware shown in Table 1 on a machine running
Ubuntu 22.04 Jammy Jellyfish.

Table 1: Hardware used in the execution time experiments.

Component Name
Motherboard ASUS PRO WS X570-ACE
CPU AMD Ryzen 9 5950X
CPU Cooler NZXT Kraken X73
GPU NVIDIA GeForce RTX3090 Ti, CUDA 11.8
RAM 4x32GB, DDR4, 3.2GHz, C16

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

3

https://doi.org/10.21105/joss.06533


Figure 1: Results of our timing experiments. We vary 𝑁, 𝐾, and 𝐴 in the first, second, and third
columns. The first two rows are PLS1. The last two rows are PLS2. The first and third rows are single-fit.
The second and fourth rows are leave-one-out cross-validation, computing the mean squared error and
best number of components for each validation split. A circle indicates that the experiment was run until
the end, and the time reported is exact. A square means that the experiment was run until the time per
iteration had stabilized and used to forecast the time usage if the experiment was run to completion.

Acknowledgements
This work is part of an industrial Ph.D. project receiving funding from FOSS Analytical A/S
and The Innovation Fund Denmark. Grant Number: 1044-00108B.

References
Alin, A. (2009). Comparison of PLS algorithms when number of objects is much larger

than number of variables. Statistical Papers, 50(4), 711. https://doi.org/10.1007/
s00362-009-0251-7

Andersson, M. (2009). A comparison of nine PLS1 algorithms. Journal of Chemometrics: A
Journal of the Chemometrics Society, 23(10), 518–529. https://doi.org/10.1002/cem.1248

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

4

https://doi.org/10.1007/s00362-009-0251-7
https://doi.org/10.1007/s00362-009-0251-7
https://doi.org/10.1002/cem.1248
https://doi.org/10.21105/joss.06533


Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of
Chemometrics: A Journal of the Chemometrics Society, 17 (3), 166–173. https://doi.org/
10.1002/cem.785

Baum, A., & Vermue, L. (2019). Multiblock PLS: Block dependent prediction modeling for
python. Journal of Open Source Software, 4(34), 1190. https://doi.org/10.21105/joss.
01190

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Dayal, B. S., & MacGregor, J. F. (1997). Improved PLS algorithms. Journal of Chemometrics:
A Journal of the Chemometrics Society, 11(1), 73–85. https://doi.org/10.1002/(SICI)
1099-128X(199701)11:1%3C73::AID-CEM435%3E3.0.CO;2-%23

Dreier, E. S., Sørensen, K. M., Lund-Hansen, T., Jespersen, B. M., & Pedersen, K. S. (2022).
Hyperspectral imaging for classification of bulk grain samples with deep convolutional
neural networks. Journal of Near Infrared Spectroscopy, 30(3), 107–121. https://doi.org/
10.1177/09670335221078356

Du, Z., Tian, W., Tilley, M., Wang, D., Zhang, G., & Li, Y. (2022). Quantitative assessment
of wheat quality using near-infrared spectroscopy: A comprehensive review. Comprehensive
Reviews in Food Science and Food Safety, 21(3), 2956–3009. https://doi.org/10.1111/
1541-4337.12958

Engstrøm, O.-C. G. (2024). Shortcutting cross-validation: Efficiently deriving column-wise
centered and scaled training set XTX and XTY without full recomputation of matrix
products or statistical moments. https://doi.org/10.48550/arXiv.2401.13185

Engstrøm, O.-C. G., Dreier, E. S., Jespersen, B. M., & Pedersen, K. S. (2023a). Improving
deep learning on hyperspectral images of grain by incorporating domain knowledge from
chemometrics. Proceedings of the IEEE/CVF International Conference on Computer Vision,
485–494. https://doi.org/10.1109/iccvw60793.2023.00055

Engstrøm, O.-C. G., Dreier, E. S., Jespersen, B. M., & Pedersen, K. S. (2023b). Analyz-
ing near-infrared hyperspectral imaging for protein content regression and grain variety
classification using bulk references and varying grain-to-background ratios. arXiv Preprint
arXiv:2311.04042. https://doi.org/10.48550/arXiv.2311.04042

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming with
NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Maclaurin, D., Duvenaud, D., & Adams, R. P. (2015). Autograd: Effortless gradients in numpy.
ICML 2015 AutoML Workshop, 238, 5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Rinnan, Å., Berg, F. van den, & Engelsen, S. B. (2009). Review of the most common
pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry,
28(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007

Sørensen, K. M., Berg, F. van den, & Engelsen, S. B. (2021). NIR data exploration and regres-
sion by chemometrics—a primer. Near-Infrared Spectroscopy: Theory, Spectral Analysis, In-
strumentation, and Applications, 127–189. https://doi.org/10.1007/978-981-15-8648-4_7

Wold, H. (1966). Estimation of principal components and related models by iterative least

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

5

https://doi.org/10.1002/cem.785
https://doi.org/10.1002/cem.785
https://doi.org/10.21105/joss.01190
https://doi.org/10.21105/joss.01190
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1002/(SICI)1099-128X(199701)11:1%3C73::AID-CEM435%3E3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1099-128X(199701)11:1%3C73::AID-CEM435%3E3.0.CO;2-%23
https://doi.org/10.1177/09670335221078356
https://doi.org/10.1177/09670335221078356
https://doi.org/10.1111/1541-4337.12958
https://doi.org/10.1111/1541-4337.12958
https://doi.org/10.48550/arXiv.2401.13185
https://doi.org/10.1109/iccvw60793.2023.00055
https://doi.org/10.48550/arXiv.2311.04042
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1007/978-981-15-8648-4_7
https://doi.org/10.21105/joss.06533


squares. Multivariate Analysis, 391–420.

Wold, S., Albano, C., Dunn, W. J., Esbensen, K., Hellberg, S., Johansson, E., Sjöström,
M., Martens, H., & Russwurm, J. (1983). Food research and data analysis. London: H.
Martens and H. Russwurn Jr.

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics.
Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.
1016/s0169-7439(01)00155-1

Engstrøm et al. (2024). IKPLS: Improved Kernel Partial Least Squares and Fast Cross-Validation Algorithms for Python with CPU and GPU
Implementations Using NumPy and JAX. Journal of Open Source Software, 9(99), 6533. https://doi.org/10.21105/joss.06533.

6

https://doi.org/10.1016/s0169-7439(01)00155-1
https://doi.org/10.1016/s0169-7439(01)00155-1
https://doi.org/10.21105/joss.06533

	Summary
	Statement of need
	Implementations
	NumPy
	JAX

	Benchmarks
	Acknowledgements
	References

