The Journal of Open Source Software

DOI: 10.21105/joss.06524

Software
= Review &7
= Repository @
= Archive &0

Editor: @Dystein Sgrensen 7
Reviewers:

= @expectopatronum

= Q@ren-zeng

Submitted: 12 March 2024
Published: 11 June 2024

License

Authors of papers retain copyright

and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

libsoni: A Python Toolbox for Sonifying Music
Annotations and Feature Representations

Yigitcan Ozer ©®!, Leo Briitting!, Simon Schwir® !, and Meinard Miiller ©*

1 International Audio Laboratories Erlangen

Summary

Music Information Retrieval (MIR) stands as a dedicated research field focused on advancing
methodologies and tools for organizing, analyzing, retrieving, and generating data related to
music. Key tasks within MIR include beat tracking, structural analysis, chord recognition,
melody extraction, and source separation, just to name a few. These tasks involve extracting
musically relevant information from audio recordings, typically accomplished by transforming
music signals into feature representations such as spectrograms, chromagrams, or tempograms
(Mdiller, 2015). Furthermore, musically relevant annotations such as beats, chords, keys, or
structure boundaries become indispensable for training and evaluating MIR approaches.

When evaluating and enhancing MIR systems, it is crucial to thoroughly examine the properties
of feature representations and annotations to gain a deeper understanding of algorithmic
behavior and the underlying data. In the musical context, alongside conventional data
visualization techniques, data sonification techniques are emerging as a promising avenue for
providing auditory feedback on extracted features or annotated information. This is particularly
advantageous given the finely tuned human perception to subtle variations in frequency and
timing within the musical domain.

This paper introduces libsoni, an open-source Python toolbox tailored for the sonification of
music annotations and feature representations. By employing explicit and easy-to-understand
sound synthesis techniques, libsoni offers functionalities for generating and triggering sound
events, enabling the sonification of spectral, harmonic, tonal, melodic, and rhythmic aspects.
Unlike existing software libraries focused on creative applications of sound generation, libsoni
is designed to meet the specific needs of MIR researchers and educators. It aims to simplify
the process of music exploration, promoting a more intuitive and efficient approach to data
analysis by enabling users to interact with their data in acoustically meaningful ways. As a
result, libsoni not only improves the analytical capabilities of music scientists but also opens
up new avenues for innovative music analysis and discovery. Furthermore, libsoni provides
well-documented and stand-alone functions covering all essential building blocks crucial for
both sound generation and sonification, enabling users to efficiently apply and easily extend
the methods. Additionally, the toolbox includes educational Jupyter notebooks with illustrative
code examples demonstrating the application of sonification and visualization methods to
deepen understanding within specific MIR scenarios.

Statement of Need

Music data, characterized by attributes such as pitch, melody, harmony, rhythm, structure,
and timbre, is inherently intricate. Visualizations are crucial in deciphering this complexity
by presenting music representations graphically, enabling researchers to identify patterns,
trends, and relationships not immediately evident in raw data. For instance, visualizing time-
dependent two-dimensional feature representations such as spectrograms (time—frequency),

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 1
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://orcid.org/0000-0003-2235-8655
https://orcid.org/0000-0001-5780-557X
https://orcid.org/0000-0001-6062-7524
https://doi.org/10.21105/joss.06524
https://github.com/openjournals/joss-reviews/issues/6524
https://github.com/groupmm/libsoni
https://doi.org/10.5281/zenodo.11085871
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/expectopatronum
https://github.com/ren-zeng
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06524

The Journal of Open Source Software

chromagrams (time—chroma), or tempograms (time—tempo) enhances comprehension of signal
processing concepts and reveals insights into the musical and acoustic properties of audio
signals. Moreover, the combined visualization of extracted features and reference annotations
facilitates detailed examination of algorithmic approaches at a granular level. These qualitative
assessments, alongside quantitative metrics, are essential for comprehending the strengths,
weaknesses, and assumptions underlying music processing algorithms. The MIR community has
developed numerous toolboxes, such as essentia (Bogdanov et al., 2013), madmom (Bock et
al., 2016), Chroma Toolbox (Miiller & Ewert, 2011), Tempogram Toolbox (Grosche & Miiller,
2011), Sync Toolbox (Miiller et al., 2021), Marsyas (Tzanetakis, 2009), or the MIRtoolbox
(Lartillot & Toiviainen, 2007), offering modular code for music signal processing and analysis,
many of which also include data visualization methods. Notably, the two Python packages
librosa (McFee et al., 2015) and libfmp (Miller & Zalkow, 2021) aim to lower the barrier to
entry for MIR research by providing accessible code alongside visualization functions, bridging
the gap between education and research.

As an alternative or addition to visualizing data, one can employ data sonification techniques to
produce acoustic feedback on extracted or annotated information (Kramer et al., 1999). This
is especially important in music, where humans excel at detecting even minor variations in the
frequency and timing of sound events. For instance, people can readily perceive irregularities
and subtle changes in rhythm when they listen to a pulse track converted into a sequence of
click sounds. This ability is particularly valuable for MIR tasks such as beat tracking and rhythm
analysis. Moreover, transforming frequency trajectories into sound using sinusoidal models
can offer insights for tasks like estimating melody or separating singing voices. Furthermore,
an auditory representation of a chromagram provides listeners with an understanding of the
harmony-related tonal information contained in an audio signal. Therefore, by converting data
into sound, sonification can reveal subtle audible details in music that may not be immediately
apparent within visual representations.

In the MIR context, sonification methods have been employed to provide deeper insights into
various music annotations and feature representations. For instance, the Python package
librosa (McFee et al., 2015) offers a function librosa.clicks that generates an audio signal
with click sounds positioned at specified times, with options to adjust the frequency and
duration of the clicks. Additionally, the Python toolbox libf0 (Rosenzweig et al., 2022) provides
a function (1ibf@.utils.sonify_trajectory_with_sinusoid) for sonifying FO trajectories
using sinusoids. Moreover, the Python package libfmp (Miiller & Zalkow, 2021) includes a func-
tion (Libfmp.b.sonify_chromagram_with_signal) for sonifying time—chroma representations.
Testing these methods, our experiments have revealed that current implementations sometimes
rely on inefficient event-based looping, which may result in excessively long runtimes.

In our Python toolbox, libsoni, we offer implementations of various sonification methods,
including those mentioned above. These implementations feature a coherent API and are
based on straightforward methods that are transparent and easy to understand (ensuring a
trade-off between efficiency and code readability). Additionally, libsoni includes all essential
components for sound synthesis, operating as a standalone tool that can be easily extended
and customized. The methods in libsoni enable interactivity, allowing for data manipulation
and sonification, as well as the ability to alter feature extraction or sonification techniques.
While real-time capabilities are not currently included in libsoni, this could be a potential future
extension. Hence, libsoni may not only be beneficial for MIR researchers but also for educators,
students, composers, sound designers, and individuals exploring new musical concepts.

Core Functionalities

In the following, we briefly describe some of the main modules included in the Python toolbox
libsoni. For an illustration of some core functionalities, we also refer to Figure 1. A compre-

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 2
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://doi.org/10.21105/joss.06524

The Journal of Open Source Software

hensive APl documentation of libsoni is publicly accessible through GitHub'. Furthermore,
the applications of core functionalities are illustrated by educational Jupyter notebooks as an
integral part of libsoni, providing illustrative code examples within concrete MIR scenarios.

(a) (b)

Frequency
S

to ty t; ts ty ts

3]
o
2
S 0
£
<4
to ty t, ts ty ts
(© (d)
Po 3
sh 3
a P2 rem— Y B PSS
P3 :>;
to ty t ts S 1
g! g
= o
= o
3 0
g 0 1 23 AP pannd

Time Index

to 4 tz t3

Figure 1: lllustration of some core functionalities provided by the Python toolbox libsoni. (a) Logo of
libsoni. (b) Sonification of FO trajectories. (c) Sonification of piano roll representations. (d) Sonification
of time—frequency representations.

Triggered Sound Events (libsonti.tse)

The Triggered Sound Events (TSE) module of libsoni contains various functions for the
sonification of temporal events. In this scenario, one typically has a music recording and a
list of time positions that indicate the presence of certain musical events. These events could
include onset positions of specific notes, beat positions, or structural boundaries between
musical parts. The TSE module allows for generating succinct acoustic stimuli at each of the
time positions, providing the listener with precise temporal feedback. Ideally, these stimuli
should be perceivable even when overlaid with the original music recording. Often, the time
positions are further classified into different categories (e.g., downbeat and upbeat positions).
To facilitate this classification, similar to librosa (McFee et al., 2015), the TSE module allows
for generating distinguishable stimuli with different “colorations’’ that can be easily associated
with the different categories. Additionally, the TSE module enables the playback of pre-recorded
stimuli at different relative time positions and, if specified by suitable parameter settings, with
time—scale modifications and pitch shifting.

Fundamental Frequency (libsoni.f0)

When describing a specific song, we often have the ability to sing or hum the main melody, which
can be loosely defined as a linear succession of musical tones expressing a particular musical
idea. In the context of a music recording (rather than a musical score), the melody corresponds
to a sequence of fundamental frequency values (also called FO values) representing the pitches
of the tones. In real performances, these sequences often form complex time—frequency patterns
known as frequency trajectories, which may include continuous frequency glides (glissando) or
frequency modulations (vibrato). In libsoni, the FO module allows for sonifying a sequence of
frame-wise frequency values that correspond to manually annotated or estimated FO values
(see also Figure 1b). This module offers a variety of adjustable parameters, allowing for the
inclusion of additional partials to tonally enrich the sonification, thereby generating sounds of

Thttps://groupmm.github.io/libsoni

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 3
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://groupmm.github.io/libsoni
https://doi.org/10.21105/joss.06524

The Journal of Open Source Software

different timbre. Moreover, users have the option to adjust the amplitude of each predicted FO
value based on its confidence level, as provided by an FO estimator. This allows for insights
into the reliability of the predictions.

Piano-Roll Representations (libsoni.pianoroll)

A symbolic score-based representation describes each note by parameters such as start time,
duration, pitch, and other attributes. This representation is closely related to MIDI encodings
and is often visualized in the form of two-dimensional piano-roll representations (see also
Figure 1c). In these representations, time is encoded on the horizontal axis, pitch on the
vertical axis, and each note is represented by an axis-parallel rectangle indicating onset, pitch,
and duration. This representation is widely used in several MIR tasks, including automatic
music transcription (Benetos et al., 2019) and music score—audio music synchronization
(Miiller, 2015). The simplest method in libsoni to sonify piano-roll representations is based
on straightforward sinusoidal models (potentially enriched by harmonics). When the score
information is synchronized with a music recording (e.g., using alignment methods provided by
the Sync Toolbox, Miiller et al., 2021), libsoni enables the creation of a stereo signal with the
sonification in one channel and the original recording in the other channel. This setup provides
an intuitive way to understand the accuracy for a range of musical analysis and transcription
tasks. Furthermore, these sonifications may be superimposed with further onset-based stimuli
provided by the TSE module.

Chromagram Representations (libsoni.chroma)

Humans perceive pitch in a periodic manner, meaning that pitches separated by an octave
are perceived as having a similar quality or acoustic color, known as chroma. This concept
motivates the use of time—chroma representations or chromagrams, where pitch bands that
differ spectrally by one or several octaves are combined to form a single chroma band (Miiller
& Ewert, 2011). These representations capture tonal information related to harmony and
melody while exhibiting a high degree of invariance with respect to timbre and instrumentation.
Chromagrams are widely used in MIR research for various tasks, including chord recognition
and structure analysis. The Chroma module of libsoni provides sonification methods for
chromagrams based on Shepard tones. These tones are weighted combinations of sinusoids
separated by octaves and serve as acoustic counterparts to chroma values. The functions
offered by libsoni enable the generation of various Shepard tone variants and can be applied
to symbolic representations (such as piano roll representations or chord annotations) or to
chroma features extracted from music recordings. This facilitates deeper insights for listeners
into chord recognition results or the harmony-related tonal information contained within an
audio signal.

Spectrogram Representations (libsoni.spectrogram)

Similar to chromagrams, pitch-based feature representations can be derived directly from music
recordings using transforms such as the constant-Q-transform (CQT), see (Schérkhuber &
Klapuri, 2010). These representations are a special type of log-frequency spectrograms, where
the frequency axis is logarithmically spaced to form a pitch-based axis. More generally, in audio
signal processing, there exists a multitude of different time—frequency representations. For
example, classic spectrograms have a linear frequency axis, usually computed via the short-time
Fourier transform (STFT). Additionally, mel-frequency spectrograms utilize the mel scale, which
approximates the human auditory system’s response to different frequencies. The Spectrogram
module of libsoni is designed to sonify various types of spectrograms with frequency axes spaced
according to linear, logarithmic, or mel scales. Essentially, each point on the scale corresponds
to a specific center frequency, meaning that each row of the spectrogram represents the
energy profile of a specific frequency over time. Our sonification approach generates sinusoids
for each center frequency value with time-varying amplitude values, in accordance with the

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 4
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://doi.org/10.21105/joss.06524

The Journal of Open Source Software

provided energy profiles, and then superimposes all these sinusoids. Transforming spectrogram-
like representations into an auditory experience, our sonification approach allows for a more
intuitive understanding of the frequency and energy characteristics within a given music
recording. Finally, we would like to emphasize that sonifying each time—frequency bin is
computationally expensive. To enhance efficiency, we integrated additional functions that
employs multiprocessing, alongside a simpler function that uses a for loop.

Design Choices

When designing the Python toolbox libsoni, we had several objectives in mind. Firstly, we
aimed to maintain close connections with existing sonification methods provided in McFee et
al. (2015) and libfmp (Miller & Zalkow, 2021). Secondly, we re-implemented and included all
necessary components (e.g., sound generators based on sinusoidal models and click sounds),
even though similar basic functionality is available in librosa and libfmp. By doing so, libsoni
offers a coherent API along with convenient but easily modifiable parameter presets. Thirdly,
we adopted many design principles suggested by librosa (McFee et al., 2015) and detailed in
(McFee et al., 2019) to lower the entry barrier for students and researchers who may not be
coding experts. This includes maintaining an explicit and straightforward programming style
with a flat, functional hierarchy to facilitate ease of use and comprehension. The source code
for libsoni, along with comprehensive APl documentation?, is publicly accessible through a
dedicated GitHub repository®. We showcase all components, including introductions to MIR
scenarios, illustrations, and sound examples via Jupyter notebooks. Finally, we have included
the toolbox in the Python Package Index (PyPl), enabling installation with the standard Python
package manager, pip*.

Acknowledgements

The libsoni package originated from collaboration with various individuals over the past years.
We express our gratitude to former and current students, collaborators, and colleagues, including
Jonathan Driedger, Angel Villar-Corrales, and Tim Zunner, for their support and influence in
creating this Python package. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Grant No. 500643750 (DFG-MU 2686/15-1)
and Grant No. 328416299 (MU 2686,/10-2). The International Audio Laboratories Erlangen
are a joint institution of the Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU) and
Fraunhofer Institute for Integrated Circuits IIS.

References

Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2019). Automatic music transcription: An
overview. IEEE Signal Processing Magazine, 36(1), 20-30. https://doi.org/10.1109/MSP.
2018.2869928

Bock, S., Korzeniowski, F., Schliter, J., Krebs, F., & Widmer, G. (2016). Madmom: A new
Python audio and music signal processing library. Proceedings of the ACM International
Conference on Multimedia (ACM-MM), 1174-1178. https://doi.org/10.1145/2964284.
2973795

Bogdanov, D., Wack, N., Gémez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon,
J., Zapata, J. R., & Serra, X. (2013). Essentia: An audio analysis library for music
information retrieval. Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 493—-498. https://doi.org/10.5281/zenodo.1415016

2https://groupmm.github.io/libsoni
3https://github.com/groupmm/libsoni
“https://pypi.org/project/libsoni

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 5
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://doi.org/10.1109/MSP.2018.2869928
https://doi.org/10.1109/MSP.2018.2869928
https://doi.org/10.1145/2964284.2973795
https://doi.org/10.1145/2964284.2973795
https://doi.org/10.5281/zenodo.1415016
https://groupmm.github.io/libsoni
https://github.com/groupmm/libsoni
https://pypi.org/project/libsoni
https://doi.org/10.21105/joss.06524

The Journal of Open Source Software

Grosche, P., & Miiller, M. (2011). Tempogram Toolbox: MATLAB tempo and pulse analysis
of music recordings. Demos and Late Breaking News of the International Society for Music
Information Retrieval Conference (ISMIR).

Kramer, G., Walker, B., Bonebright, T., Cook, P., Flowers, J. H., Miner, N., & Neuhoff,
J. (1999). Sonification report: Status of the field and research agenda. International
Community for Auditory Display.

Lartillot, O., & Toiviainen, P. (2007). MIR in MATLAB (1l): A toolbox for musical feature
extraction from audio. Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 127-130. https://doi.org/10.5281/zenodo.1417145

McFee, B., Kim, J. W., Cartwright, M., Salamon, J., Bittner, R. M., & Bello, J. P. (2019). Open-
source practices for music signal processing research: Recommendations for transparent,
sustainable, and reproducible audio research. IEEE Signal Processing Magazine, 36(1),
128-137. https://doi.org/10.1109/MSP.2018.2875349

McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O.
(2015). Librosa: Audio and music signal analysis in Python. Proceedings the Python
Science Conference, 18-25. https://doi.org/10.25080/Majora-7b98e3ed-003

Miiller, M. (2015). Fundamentals of music processing — audio, analysis, algorithms, applications
(pp. 1-480) [Monograph]. Springer Verlag. https://doi.org/10.1007/978-3-319-21945-5

Miiller, M., & Ewert, S. (2011). Chroma Toolbox: MATLAB implementations for extracting
variants of chroma-based audio features. Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 215-220. https://doi.org/10.5281/zenodo.
1416032

Miiller, M., Ozer, Y., Krause, M., Pratzlich, T., & Driedger, J. (2021). Sync Toolbox: A
Python package for efficient, robust, and accurate music synchronization. Journal of Open
Source Software (JOSS), 6(64), 3434:1-4. https://doi.org/10.21105/joss.03434

Miller, M., & Zalkow, F. (2021). libfmp: A Python package for fundamentals of music
processing. Journal of Open Source Software (JOSS), 6(63), 3326:1-5. https://doi.org/
10.21105/joss.03326

Rosenzweig, S., Schwar, S., & Miiller, M. (2022). libf0: A Python library for fundamental
frequency estimation. Demos and Late Breaking News of the International Society for
Music Information Retrieval Conference (ISMIR). https://doi.org/10.5281/zenodo.7512227

Schérkhuber, C., & Klapuri, A. P. (2010). Constant-Q transform toolbox for music processing.
Proceedings of the Sound and Music Computing Conference (SMC). https://doi.org/10.
5281/zenodo.849741

Tzanetakis, G. (2009). Music analysis, retrieval and synthesis of audio signals MARSYAS.
Proceedings of the ACM International Conference on Multimedia (ACM-MM), 931-932.
https://doi.org/10.1145/1631272.1631459

Ozer et al. (2024). libsoni: A Python Toolbox for Sonifying Music Annotations and Feature Representations. Journal of Open Source Software, 6
9(98), 6524. https://doi.org/10.21105/joss.06524.


https://doi.org/10.5281/zenodo.1417145
https://doi.org/10.1109/MSP.2018.2875349
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1007/978-3-319-21945-5
https://doi.org/10.5281/zenodo.1416032
https://doi.org/10.5281/zenodo.1416032
https://doi.org/10.21105/joss.03434
https://doi.org/10.21105/joss.03326
https://doi.org/10.21105/joss.03326
https://doi.org/10.5281/zenodo.7512227
https://doi.org/10.5281/zenodo.849741
https://doi.org/10.5281/zenodo.849741
https://doi.org/10.1145/1631272.1631459
https://doi.org/10.21105/joss.06524

	Summary
	Statement of Need
	Core Functionalities
	Triggered Sound Events ()
	Fundamental Frequency ()
	Piano-Roll Representations ()
	Chromagram Representations ()
	Spectrogram Representations ()

	Design Choices
	Acknowledgements
	References

