
Pybehave: a hardware agnostic, Python-based
framework for controlling behavioral neuroscience
experiments
Evan M. Dastin-van Rijn 1, Joel Nielsen1, Elizabeth M. Sachse 1,
Christina Li1, Megan E. Mensinger1, Stefanie G. Simpson1, Michelle C.
Buccini1, Francesca A. Iacobucci1, David J. Titus 1, and Alik S. Widge 1

1 Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical Center,
Minneapolis, MN 55454, United States of America

DOI: 10.21105/joss.06515

Software
• Review
• Repository
• Archive

Editor: Stefan Appelhoff
Reviewers:

• @tuliofalmeida
• @alustig3

Submitted: 16 February 2024
Published: 05 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
This work presents our pybehave framework for developing behavioral tasks for use in ex-
perimental animal neuroscience. In contrast to other platforms, pybehave is built around a
hardware-agnostic and highly object-oriented design philosophy. Pybehave separates code for
task design from specific hardware implementations to streamline development, accessibility,
and data sharing. This approach, combined with task-specific graphical user interfaces, expe-
dites and simplifies the creation and visualization of complex behavioral tasks. User created
task definition files can interact with hardware-specific source files, both written in Python.
Any and all local configuration can be handled separately from the underlying task code.

Statement of need
Operant animal behavior training and monitoring is fundamental to scientific inquiry across
fields (Krakauer et al., 2017). In many cases, a behavior of relevance, or its neural substrate, is
best studied through a controlled laboratory task. These tasks require tight integration of the
hardware components with which animals interact (IR beams, levers, lights, food dispensers,
etc.) and the overarching software that coordinates these components to elicit desired behaviors.
There are a plethora of options for systems to facilitate behavioral tasks, from commercial
solutions (Panlab, Lafayette Instruments, Med Associates) to open-source packages (Akam
et al., 2022; Dastin-van Rijn et al., 2023; Hwang et al., 2019) enabling a large variety of
behavioral paradigms. Many of these systems are designed for the same behavioral paradigms
with only slight differences in hardware, sensory modalities, or geometry. However, while the
actual mechanics of these paradigms remain relatively similar, different solutions will often rely
on vastly different software interfaces (Cardinal & Aitken, 2010; Lopes et al., 2015). Especially
with commercial systems, behavioral tasks are often programmed in proprietary formats. This
approach significantly raises the barrier to entry, leads to outdated software, and prevents
sharing of tasks across labs.

Research in human behavior does not suffer from many of the aforementioned issues. Human
behavioral tasks are generally run through a graphical interface implemented in a standard
programming language like Python (Peirce et al., 2019), Javascript (Leeuw, 2015), or Matlab
(Brainard, 1997). These tasks are readily compatible with most machines and are frequently
shared between labs and used across multiple studies (Provenza et al., 2021). Protocols,
data, and task code can be easily included in a manuscript and accessed and modified by
future researchers. However, unlike experiments in animal behavior, human experiments rarely

Dastin-van Rijn et al. (2024). Pybehave: a hardware agnostic, Python-based framework for controlling behavioral neuroscience experiments.
Journal of Open Source Software, 9(98), 6515. https://doi.org/10.21105/joss.06515.

1

https://orcid.org/0000-0002-1428-0723
https://orcid.org/0000-0002-1669-8752
https://orcid.org/0000-0001-7819-734X
https://orcid.org/0000-0001-8510-341X
https://doi.org/10.21105/joss.06515
https://github.com/openjournals/joss-reviews/issues/6515
https://github.com/tne-lab/py-behav-box-v2
https://doi.org/10.5281/zenodo.11244351
https://stefanappelhoff.com/
https://orcid.org/0000-0001-8002-0877
https://github.com/tuliofalmeida
https://github.com/alustig3
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06515


require hardware beyond a monitor and standard input device (keyboard/mouse). Instead,
most animal platforms, even from open source developers, restrict their software to certain
types of hardware (Akam et al., 2022; Hwang et al., 2019). For example, pycontrol is only
compatible with their companion microcontroller and input devices and MonkeyLogic can only
communicate with DAQs manufactured by National Instruments. To address these limitations,
we developed pybehave as a framework for abstracting standard hardware components to
enable an implementation-independent format for developing and running behavioral tasks.

Benefits
Pybehave is a complete framework for building and running behavioral neuroscience experiments.
It offers the following benefits: (1) hardware independence; (2) a flexible, programmatic
system for developing tasks; (3) a highly extensible graphical interface for configuring and
executing tasks; (4) options for task-specific visualization; (5) simultaneous control of multiple
experiments; (6) options for locally configuring task variables and protocols; and (5) an
extensive developer API, which allows users to extend the platform with tie-ins for custom
hardware, event logging, or software connections.

Software Design Principles
To ensure flexibility while maintaining low-latency, pybehave is optimized through a combination
of multiprocessing and multithreading along with separation of its features (events, hardware
sources, tasks, etc.) into a modular software architecture. Additionally, pybehave uses two
different GUI frameworks (QT and pygame) for user interfacing and task visualization/stimulus
display respectively (Figure 1).

Figure 1: Framework diagram showing the information exchange between the pybehave threads and
processes. The workstation process handles the interface and task GUIs. When Tasks are added from
the workstation, they are initialized in the task process. Each Source with a connection to an external
hardware or software system communicates with their pybehave equivalent in the Task process. All
events sent between processes are mediated via inter-process communication over Pipes.

Tutorials and ongoing usage
A variety of tutorials are included in the repository aimed at all levels of usage, from technicians
running tasks or analyzing behavioral data to developers aiming to build new tasks or integrate

Dastin-van Rijn et al. (2024). Pybehave: a hardware agnostic, Python-based framework for controlling behavioral neuroscience experiments.
Journal of Open Source Software, 9(98), 6515. https://doi.org/10.21105/joss.06515.

2

https://doi.org/10.21105/joss.06515


additional hardware. Pybehave has already been applied to implement a variety of behavioral
tasks which have been included in a separate repository for users to pull from directly or
modify. These tasks are being run in a number of ongoing studies spanning standard operant
conditioning (Dastin-van Rijn et al., 2023; Mensinger et al., 2023), evoked responses (Sachse
et al., 2023), and video assays.

Acknowledgements
Testing of pybehave was carried out with substantial support from many members of the
Translational Neuroengineering lab. Evan Dastin-van Rijn was supported by a National
Science Foundation Graduate Research Fellowship under award number 2237827. Aspects
of the research were supported by grants R01MH123634, R01NS120851, R01NS113804 and
R01MH119384, as well as by the Minnesota Medical Discovery Team on Addiction and the
MnDRIVE Brain Conditions Initiative. The opinions presented herein are not those of any
funding body.

References
Akam, T., Lustig, A., Rowland, J. M., Kapanaiah, S. K., Esteve-Agraz, J., Panniello, M.,

Márquez, C., Kohl, M. M., Kätzel, D., Costa, R. M., & Walton, M. E. (2022). Open-source,
Python-based, hardware and software for controlling behavioural neuroscience experiments.
eLife, 11, e67846. https://doi.org/10.7554/eLife.67846

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https:
//doi.org/10.1163/156856897X00357

Cardinal, R. N., & Aitken, M. R. F. (2010). Whisker: A client–server high-performance
multimedia research control system. Behavior Research Methods, 42(4), 1059–1071.
https://doi.org/10.3758/BRM.42.4.1059

Dastin-van Rijn, E. M., Sachse, E., Iacobucci, F., Mensinger, M., & Widge, A. S. (2023).
OSCAR: An open-source controller for animal research. bioRxiv. https://doi.org/10.1101/
2023.02.03.527033

Hwang, J., Mitz, A. R., & Murray, E. A. (2019). NIMH MonkeyLogic: Behavioral control
and data acquisition in MATLAB. Journal of Neuroscience Methods, 323, 13–21. https:
//doi.org/10.1016/j.jneumeth.2019.05.002

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017).
Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480–490.
https://doi.org/10.1016/j.neuron.2016.12.041

Leeuw, J. R. de. (2015). jsPsych: A JavaScript library for creating behavioral experiments
in a Web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/
s13428-014-0458-y

Lopes, G., Bonacchi, N., Frazão, J., Neto, J. P., Atallah, B. V., Soares, S., Moreira, L., Matias,
S., Itskov, P. M., Correia, P. A., Medina, R. E., Calcaterra, L., Dreosti, E., Paton, J. J., &
Kampff, A. R. (2015). Bonsai: An event-based framework for processing and controlling
data streams. Frontiers in Neuroinformatics, 9. https://doi.org/10.3389/fninf.2015.00007

Mensinger, M., Wald, A., Sachse, E. M., Rijn, E. M. D., Reimer, A. E., & Widge, A.
S. (2023). 462. Deep Brain Stimulation Does Not Affect Impulsivity in a Rodent 5-
Choice Serial Reaction Time Task. Biological Psychiatry, 93(9), S281–S282. https:
//doi.org/10.1016/j.biopsych.2023.02.702

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman,
E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior

Dastin-van Rijn et al. (2024). Pybehave: a hardware agnostic, Python-based framework for controlling behavioral neuroscience experiments.
Journal of Open Source Software, 9(98), 6515. https://doi.org/10.21105/joss.06515.

3

https://doi.org/10.7554/eLife.67846
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
https://doi.org/10.3758/BRM.42.4.1059
https://doi.org/10.1101/2023.02.03.527033
https://doi.org/10.1101/2023.02.03.527033
https://doi.org/10.1016/j.jneumeth.2019.05.002
https://doi.org/10.1016/j.jneumeth.2019.05.002
https://doi.org/10.1016/j.neuron.2016.12.041
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.1016/j.biopsych.2023.02.702
https://doi.org/10.1016/j.biopsych.2023.02.702
https://doi.org/10.21105/joss.06515


Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y

Provenza, N. R., Gelin, L. F. F., Mahaphanit, W., McGrath, M. C., Dastin-van Rijn, E.
M., Fan, Y., Dhar, R., Frank, M. J., Restrepo, M. I., Goodman, W. K., & Borton,
D. A. (2021). Honeycomb: A template for reproducible psychophysiological tasks for
clinic, laboratory, and home use. Brazilian Journal of Psychiatry, 44, 147–155. https:
//doi.org/10.1590/1516-4446-2020-1675

Sachse, E., Rijn, E. M. D., Mensinger, M. E., Iacobucci, F. A., Reimer, A. E., & Widge, A.
S. (2023). 534. Optogenetic Deep Brain Stimulation of mPFC Axons in Mid-Striatum
Improves Cognitive Flexibility. Biological Psychiatry, 93(9), S310. https://doi.org/10.
1016/j.biopsych.2023.02.774

Dastin-van Rijn et al. (2024). Pybehave: a hardware agnostic, Python-based framework for controlling behavioral neuroscience experiments.
Journal of Open Source Software, 9(98), 6515. https://doi.org/10.21105/joss.06515.

4

https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1590/1516-4446-2020-1675
https://doi.org/10.1590/1516-4446-2020-1675
https://doi.org/10.1016/j.biopsych.2023.02.774
https://doi.org/10.1016/j.biopsych.2023.02.774
https://doi.org/10.21105/joss.06515

	Summary
	Statement of need
	Benefits
	Software Design Principles
	Tutorials and ongoing usage
	Acknowledgements
	References

