
PyXAB - A Python Library for 𝒳-Armed Bandit and
Online Blackbox Optimization Algorithms

Wenjie Li 1*¶, Haoze Li1*, Qifan Song1, and Jean Honorio2

1 Department of Statistics, Purdue University, USA 2 School of Computing and Information Systems,
The University of Melbourne, Australia ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.06507

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @Otomisin
• @KBodolai

Submitted: 04 October 2023
Published: 24 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We introduce a Python open-source library for𝒳-armed bandit and online blackbox optimization
named PyXAB. PyXAB contains the implementations of more than 10 𝒳-armed bandit
algorithms, such as Zooming, StoSOO, HCT, and the most recent works such as GPO and
VHCT. PyXAB also provides the most commonly-used synthetic objectives to evaluate the
performance of different algorithms and the various choices of the hierarchical partitions on
the parameter space. The online documentation for PyXAB includes clear instructions for
installation, straightforward examples, detailed feature descriptions, and a complete reference
of the API. PyXAB is released under the MIT license in order to promote both academic and
industrial usage. The library can be directly installed from PyPI with its source code available
at https://github.com/WilliamLwj/PyXAB.

Statement of need
Online blackbox optimization has become a heated research topic due to the recent popularity
of machine learning models and thus the increasing demand for hyper-parameter tuning
algorithms (L. Li et al., 2018; W. Li, Song, & Honorio, 2024; Shang et al., 2019; Wang et al.,
2023). Other applications, such as neural architecture search, federated learning, and personal
investment portfolio designs, also contribute to its prosperity nowadays (W. Li et al., 2023;
W. Li, Song, Honorio, & Lin, 2024). Different online blackbox optimization algorithms, e.g.,
Bayesian Optimization algorithms (Shahriari et al., 2016) and two-point evaluation methods
(Duchi et al., 2015; Shamir, 2015) have been proposed.

Apart from the aforementioned works, another very famous line of research is 𝒳-armed bandit,
also known as Lipschitz bandit, global optimization or bandit-based blackbox optimization
(Bartlett et al., 2019; Bubeck et al., 2011; Grill et al., 2015; Kleinberg et al., 2008). In
this field, researchers split the parameter domain 𝒳 into smaller and smaller sub-domains
(commonly known as nodes) hierarchically, and treat each sub-domain to be an un-evaluated
arm as in the multi-armed bandit problems (Azar et al., 2014; Bubeck et al., 2011). However,
such 𝒳-armed bandit problems are much harder than their multi-armed counterparts, since
the number of sub-domains increases exponentially as the partition grows, and the hierarchical
structure/Lipschitzness assumption implies internal correlations between the “arms”. Therefore,
directly applying multi-armed bandit algorithms to such problems would be infeasible and more
complicated algorithms that are more appropriate have been designed and developed for these
types of problems (Grill et al., 2015; W. Li et al., 2023; Shang et al., 2019).

Despite the popularity of this area, most of the algorithms proposed by the researchers are either
not open-sourced or implemented in different programming languages in disjoint packages. For

Li et al. (2024). PyXAB - A Python Library for 𝒳-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software,
9(102), 6507. https://doi.org/10.21105/joss.06507.

1

https://orcid.org/0000-0003-1872-4595
https://doi.org/10.21105/joss.06507
https://github.com/openjournals/joss-reviews/issues/6507
https://github.com/WilliamLwj/PyXAB
https://doi.org/10.5281/zenodo.13963754
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/Otomisin
https://github.com/KBodolai
https://creativecommons.org/licenses/by/4.0/
https://github.com/WilliamLwj/PyXAB
https://doi.org/10.21105/joss.06507

Table 1: Selected examples of 𝒳-armed bandit algorithms implemented in our library. Cumulative:
whether the algorithm focuses on optimizing cumulative regret or simple regret. Stochastic: whether
the algorithm deals with noisy rewards. Open-sourced? : the code availability before the development of
PyXAB.

𝒳-Armed Bandit Algorithm Cumulative Stochastic Open-sourced?
HOO yes yes yes (Python)
DOO no no no
StoSOO no yes yes (MATLAB, C)
HCT yes yes no
POO no yes yes (Python, R)
GPO no yes no
SequOOL no no no
StroquOOL no yes no
VROOM no no no
VHCT yes yes no

example, StoSOO (Valko et al., 2013) is implemented in MATLAB and C1, whereas HOO (Bubeck
et al., 2011) is implemented in Python2. For most of the other algorithms, no open-sourced
implementations could be found on the internet. We believe the lack of such resources results
from the following two main reasons.

• The algorithms are long and intrinsically hard to implement due to the heavy usage of
hierarchical partitions, node sampling, and the exploration-exploitation strategies that
involve building, maintaining, and expanding complicated tree structures. It is hence
time-consuming to implement and test one single algorithm.

• The problem settings for the algorithms could be slightly different. Some algorithms such
as HOO (Bubeck et al., 2011) and HCT (Azar et al., 2014) are designed for the setting
where the function evaluations can be noisy, while SequOOL (Bartlett et al., 2019) is
proposed for the noiseless case. Some algorithms focus on cumulative-regret optimization
whereas some only care about the last-point regret or the simple regret3. Therefore,
experimental comparisons often focus on a small subset of algorithms, see e.g., Azar et al.
(2014), Bartlett et al. (2019). The unavailability of a general package only deteriorates
the situation.

In Table 1, we provide the comparison among some of the algorithms implemented in PyXAB,
including HOO (Bubeck et al., 2011), DOO (Munos, 2011), StoSOO (Valko et al., 2013), HCT
(Azar et al., 2014), POO (Grill et al., 2015), GPO (Shang et al., 2019), SequOOL (Bartlett et al.,
2019), StroquOOL (Bartlett et al., 2019), VROOM (Ammar et al., 2020). and VHCT (W. Li et al.,
2023).

To remove the barriers for future research in this area, we have developed PyXAB, a Python
library of the existing popular 𝒳-armed bandit algorithms. To the best of our knowledge,
this is the first comprehensive library for 𝒳-armed bandit, with clear documentations and
user-friendly API references.

1https://team.inria.fr/sequel/software/
2https://github.com/ardaegeunlu/X-armed-Bandits
3A more detailed discussion on simple regret and cumulative regret can be found in Bubeck et al. (2011)

Li et al. (2024). PyXAB - A Python Library for 𝒳-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software,
9(102), 6507. https://doi.org/10.21105/joss.06507.

2

https://team.inria.fr/sequel/software/
https://github.com/ardaegeunlu/X-armed-Bandits
https://doi.org/10.21105/joss.06507

Library Design and Usage

DOO

StoSOO

SequOOLAlgo

BinaryPartition

RandomBinaryPartition

DimensionBinaryPartitionPartition

DOO_node

StoSOO_node

SequOOL_nodeNode

Garland

DoubleSine

HimmelblauObjective

domain split by

inside

Blackbox Optimization

inputstore information

domain, reward

Figure 1: An overview of the PyXAB library structure.

The API of PyXAB is designed to follow the 𝒳-armed bandit learning paradigm and to allow
the maximum freedom of usage. We provide an overview of the library in Figure 1.

Algorithm. All the algorithms inherit the abstract class Algorithm. Each algorithm will
implement two kinds of actions via: (1) a pull() function that returns the chosen point to be
evaluated by the objective; (2) a receive_reward() function to collect the evaluation result
and update the algorithm behavior.

Partition. Given any parameter domain, the user is able to choose any partition of the domain
as part of the input of the optimization algorithm. All implemented partitions inherit the
Partition class, which has useful base functions such as deepen and get_node_list. Each
specific partition class needs to implement a unique make_children() function that split one
parent node into the children nodes and maintain the tree structure. For implementation
convenience, the package also provides a few built-in choices such as BinaryPartition and
RandomBinaryPartition.

Node. The base node class used in any partition is P_node, which contains useful helper
functions to store domain information and maintain the partition structure. However, we allow
the algorithms to overwrite the node choices in any partition so that node-wise operations
are allowed. For example, the StoSOO algorithm needs to compute and store the 𝑏ℎ,𝑖-value for
each node (Valko et al., 2013). The StroquOOL algorithm needs to record the number of times
a node is opened (Bartlett et al., 2019). Therefore, different node classes are implemented for
these algorithms.

Objective. For all the objectives implemented in this package, they all inherit the Objective

class and all have a function f() that returns the evaluation result of a given point. We also
provide the commonly used synthetic objectives which are used to evaluate the performance of
𝒳-armed bandit algorithms in research papers, such as Garland, DoubleSine, and Himmelblau.

The usage of the PyXAB library is rather straightforward. Given the number of rounds, the
objective function, and the parameter domain, the learner would choose the partition of the
parameter space and the bandit algorithm. Then in each round, the learner obtains one point
from the algorithm, evaluates it on the objective, and returns the reward to the algorithm. The
following snippet of code provides an example of optimizing the Garland synthetic objective on
the domain [[0, 1]] by running the HCT algorithm with BinaryPartition for 1000 iterations.
As can be observed, only about ten lines of code are needed for the optimization process apart
from the import statements.

Li et al. (2024). PyXAB - A Python Library for 𝒳-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software,
9(102), 6507. https://doi.org/10.21105/joss.06507.

3

https://doi.org/10.21105/joss.06507

from PyXAB.synthetic_obj.Garland import Garland

from PyXAB.algos.HCT import HCT

Define the number of rounds, target, domain, and algorithm

T = 1000

target = Garland()

domain = [[0, 1]]

algo = HCT(domain=domain)

Run the algorithm HCT

for t in range(1, T+1):

point = algo.pull(t)

reward = target.f(point)

algo.receive_reward(t, reward)

Code Quality and Documentation
In order to ensure high code quality, we follow the PEP8 style and format all of our code using
the black package4. We use the pytest package to test our implementations with different
corner cases. More than 99% of our code is covered by the tests and GitHub workflows
automatically generate a coverage report upon each push or pull request on the main branch5.

We provide detailed API documentation for each of the implemented classes and functions
through NumPy docstrings. The documentation is fully available online on ReadTheDocs6. On
the same website, we also provide installation guides, algorithm introductions, both elementary
and advanced examples of using our package, as well as detailed contributing instructions and
new feature implementation examples to encourage future contributions.

References
Ammar, H., Gabillon, V., Tutunov, R., & Valko, M. (2020). Derivative-free order-robust

optimisation. In S. Chiappa & R. Calandra (Eds.), Proceedings of the twenty third
international conference on artificial intelligence and statistics (Vol. 108, pp. 2293–2303).
PMLR.

Azar, M. G., Lazaric, A., & Brunskill, E. (2014). Online stochastic optimization under correlated
bandit feedback. International Conference on Machine Learning, 1557–1565.

Bartlett, P. L., Gabillon, V., & Valko, M. (2019). A simple parameter-free and adaptive
approach to optimization under a minimal local smoothness assumption. 30th International
Conference on Algorithmic Learning Theory.

Bubeck, S., Munos, R., Stoltz, G., & Szepesvári, C. (2011). 𝜒-armed bandits. Journal of
Machine Learning Research, 12(46), 1655–1695.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., & Wibisono, A. (2015). Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions
on Information Theory, 61(5), 2788–2806. https://doi.org/10.1109/TIT.2015.2409256

Grill, J.-B., Valko, M., Munos, R., & Munos, R. (2015). Black-box optimization of noisy
functions with unknown smoothness. Advances in Neural Information Processing Systems.

Kleinberg, R., Slivkins, A., & Upfal, E. (2008). Multi-armed bandits in metric spaces.
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, 681–690.

4https://github.com/psf/black
5https://github.com/WilliamLwj/PyXAB
6https://pyxab.readthedocs.io/

Li et al. (2024). PyXAB - A Python Library for 𝒳-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software,
9(102), 6507. https://doi.org/10.21105/joss.06507.

4

https://doi.org/10.1109/TIT.2015.2409256
https://github.com/psf/black
https://github.com/WilliamLwj/PyXAB
https://pyxab.readthedocs.io/
https://doi.org/10.21105/joss.06507

https://doi.org/10.1145/1374376.1374475

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185), 1–52.

Li, W., Song, Q., & Honorio, J. (2024). Personalized federated 𝜒-armed bandit. In S. Dasgupta,
S. Mandt, & Y. Li (Eds.), Proceedings of the 27th international conference on artificial
intelligence and statistics (Vol. 238, pp. 37–45). PMLR. https://proceedings.mlr.press/
v238/li24a.html

Li, W., Song, Q., Honorio, J., & Lin, G. (2024). Federated 𝜒-armed bandit. Proceedings of
the AAAI Conference on Artificial Intelligence, 38(12), 13628–13636. https://doi.org/10.
1609/aaai.v38i12.29267

Li, W., Wang, C.-H., Cheng, G., & Song, Q. (2023). Optimum-statistical collaboration towards
general and efficient black-box optimization. Transactions on Machine Learning Research.
https://openreview.net/forum?id=ClIcmwdlxn

Munos, R. (2011). Optimistic optimization of a deterministic function without the knowledge
of its smoothness. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Q. Weinberger
(Eds.), Advances in neural information processing systems (Vol. 24). Curran Associates,
Inc.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & Freitas, N. de. (2016). Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1), 148–175. https://doi.org/10.1109/JPROC.2015.2494218

Shamir, O. (2015). An optimal algorithm for bandit and zero-order convex optimization with
two-point feedback. Journal of Machine Learning Research, 18.

Shang, X., Kaufmann, E., & Valko, M. (2019). General parallel optimization a without metric.
Algorithmic Learning Theory, 762–788.

Valko, M., Carpentier, A., & Munos, R. (2013). Stochastic simultaneous optimistic optimization.
Proceedings of the 30th International Conference on Machine Learning, 28, 19–27.

Wang, C.-H., Li, W., & Lin, G. (2023). Federated high-dimensional online decision mak-
ing. Transactions on Machine Learning Research. https://openreview.net/forum?id=
TjaMO63fc9

Li et al. (2024). PyXAB - A Python Library for 𝒳-Armed Bandit and Online Blackbox Optimization Algorithms. Journal of Open Source Software,
9(102), 6507. https://doi.org/10.21105/joss.06507.

5

https://doi.org/10.1145/1374376.1374475
https://proceedings.mlr.press/v238/li24a.html
https://proceedings.mlr.press/v238/li24a.html
https://doi.org/10.1609/aaai.v38i12.29267
https://doi.org/10.1609/aaai.v38i12.29267
https://openreview.net/forum?id=ClIcmwdlxn
https://doi.org/10.1109/JPROC.2015.2494218
https://openreview.net/forum?id=TjaMO63fc9
https://openreview.net/forum?id=TjaMO63fc9
https://doi.org/10.21105/joss.06507

	Summary
	Statement of need
	Library Design and Usage
	Code Quality and Documentation
	References

