SS

The Journal of Open Source Software

HealpixMPI.jl: an MPI-parallel implementation of the
Healpix tessellation scheme in Julia

Leo A. Bianchi®1?

1 Dipartimento di Fisica Aldo Pontremoli, Universita degli Studi di Milano, Milan, Italy 2 Institute of
Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway

DOI: 10.21105/joss.06467

Software
» Review & Summary
= Repository @
« Archive & Spherical Harmonic Transforms (SHTs) can be seen as Fourier Transforms’ spherical, two-

dimensional counterparts, casting real-space data to the spectral domain and vice versa. As in
Fourier analysis where a function is decomposed into a set of amplitude coefficients, an SHT
allows any spherically-symmetric field, defined in real space, to be decomposed into a set of
complex harmonic coefficients a, ,,,, commonly referred to as alms, where each quantifies the
contribution of the corresponding spherical harmonic function.

Editor: Prashant K Jha @&

Reviewers:

= @marcobonici .
SHTs are important for a wide variety of theoretical and practical scientific applications, including

particle physics, astrophysics, and cosmology. However, SHTs are generally computationally

= @baxmittens

Submitted: 05 February 2024 expensive operations and thus often constitute the bottleneck of the scientific software they
Published: 20 May 2024 are part of. For this reason, much effort has been spent over the last couple of decades to
License obtain fast and efficient SHT implementations. In such a setting, parallel computing naturally
Authors of papers retain copyright COMes into play, especially for time-consuming software to be run on large High-Performance
and release the work under a Computing (HPC) clusters.

Creative Commons Attribution 4.0

International License (CC BY 4.0). The Julia package HealpixMPI.j1 constitutes an extension package of Healpix.jl (Tomasi

& Li, 2021), efficiently parallelizing its SHT-related functionalities. Healpix.jl is a Julia-only
implementation of the HEALPix (Gorski et al., 2005) library, which provides one of the most
used two-sphere tessellation schemes and a series of SHTs-related functions.

The main goal of the Julia package presented in this paper, HealpixMPI. j1, is to efficiently
employ a large number of computing cores to perform fast spherical harmonic transforms. This
paper presents the key features implemented to achieve this, together with a statement of
need and the results of a parallel scaling test.

Figure 1: HealpixMPI.jl's logo

Bianchi. (2024). HealpixMPL.jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia. Journal of Open Source Software, 1
9(97), 6467. https://doi.org/10.21105/joss.06467.


https://orcid.org/0009-0002-6351-5426
https://doi.org/10.21105/joss.06467
https://github.com/openjournals/joss-reviews/issues/6467
https://github.com/LeeoBianchi/HealpixMPI.jl
https://doi.org/10.5281/zenodo.11192548
https://prashjha.github.io/
https://orcid.org/0000-0003-2158-364X
https://github.com/marcobonici
https://github.com/baxmittens
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06467

The Journal of Open Source Software

Statement of need

Together with a variety of applications, spherical harmonic transforms are extremely relevant
in different cosmological research topics, e.g., Loureiro et al. (2023) and Euclid Collaboration
(2023). Among those, SHTs are essential for the analysis of cosmic microwave background
(CMB) radiation, which is one of the most active cosmology research areas. CMB radiation is, in
fact, very conveniently described as a temperature (and polarization) field on the celestial sphere,
making spherical harmonics the most natural mathematical tool for analyzing its measured
signal. On the other hand, from a computational point of view, CMB field measurements need,
of course, to be discretized, requiring a mathematically consistent pixelization of the sphere
and the functions defined on it. This is exactly the goal HEALPix was targeting when it was
released more than two decades ago; it quickly became the standard library for CMB numerical
analysis. HEALPix code can be, of course, used for a wider variety of applications, but its bond
with CMB analysis has always been particularly strong, especially given the research focus
of its main authors. Not surprisingly, the cosmic microwave background is also the research
context wherein HealpixMPI. j1 was born.

SHTs are often the computational bottleneck of CMB data analysis pipelines, as the one
implemented by Cosmoglobe (Watts et al., 2023) based on the software Commander (Eriksen
et al., 2004). Given the significantly increasing amount of data produced by the most recent
observational experiments, efficient algorithms alone are no longer enough to perform SHTs
within acceptable run times, and a parallel architecture must be implemented. In the specific
case of Cosmoglobe and Commander, the goal for the next years is to be able to run a full
pipeline, and thus the SHTs performed in it, on large HPC clusters efficiently employing at
least 10* cores.

To achieve this, an implementation of massively parallel spherical harmonic transforms beyond
machine-size limitations is unavoidably needed. The concept of HealpixMPI.j1 was born as a
contribution to Cosmoglobe's pipeline targeting this exact goal.

The latest SHT engine: DUCC

As of the time this paper was submitted, Healpix. j1 relied on the SHTs provided by the C
library libsharp (Reinecke & Seljebotn, 2013). However, libsharp’s development ceased
a few years ago, and its functionalities have been included as an SHT sub-module in DUCC
(Reinecke, 2019), an acronym of “Distinctively Useful Code Collection.”

The timing between the development of HealpixMPI.jl and a Julia interface for DUCC has
been quite fortunate. This allowed HealpixMPI.jl to be up-to-date with the state of the
art of spherical harmonics upon its first release. In fact, DUCC's code is derived directly from
libsharp, but has been significantly enhanced with the latest algorithmical improvements as
well as the employment of standard C++ multithreading for shared-memory parallelization of
the core operations.

Hybrid parallelization of the SHT

To run SHTs on a large number of cores, i.e., on an HPC cluster, HealpixMPI. j1 provides a
hybrid parallel design, based on simultaneous usage of multithreading and MPI, for shared-
and distributed-memory parallelization respectively, as shown in Figure 2.

Bianchi. (2024). HealpixMPL.jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia. Journal of Open Source Software, 2
9(97), 6467. https://doi.org/10.21105/joss.06467.


https://doi.org/10.21105/joss.06467

The Journal of Open Source Software

Hybrid parallel computer

~

CORE N % CORE CORE CORE
CORE MEMORT CORE CORE MEMORY CORE
CORE ™ coRe CORE / N CORE
. ! \ )
N /
NETWORK
~ N
CORE CORE CORE CORE
N N /
CORE — MEMORY — CORE CORE — MEMORY — CORE
CORE /! CORE CORE / . CORE
. vy .

Figure 2: Multi-node computing cluster representation. The optimal way to parallelize operations such
as the SHTs on a cluster of computers is to employ MPI to share the computation between the available
nodes, assigning one MPI task per node, and multithreading to parallelize within each node, involving as
many CPUs as locally available. Figure taken from www.comsol.com.

In the case of 'HealpixMPILjl', native C++ multithreading is provided by DUCC for its spherical
harmonic transforms by default; while the MPI interface is entirely coded in Julia and based
on the package MPI.jl (Byrne et al., 2021).

Moreover, the MPI parallelization requires data to be distributed across the MPI tasks. As
shown in the usage examples, this is implemented by mirroring Healpix.jl's classes with two
new distributed data types: DAlm and DMap, encoding the harmonic coefficients and a pixelized
representation of the spherical field respectively.

Usage example

An usage example with all the necessary steps to set up and perform an MPI-parallel alm2map
SHT can be found on the front page of HealpixMPI. jl's repository.

In addition, refer to Jommander, a parallel and Julia-only CMB Gibbs Sampler, for an example
of code based on HealpixMPI.j1l.

Scaling results

This section shows the results of parallel benchmark tests conducted on HealpixMPI.jl. In
particular, a strong-scaling scenario is analyzed: given a problem of fixed size, the wall time
improvement is measured as the number of cores exploited in the computation is increased.

To obtain a reliable measurement of massively parallel spherical harmonics wall time is certainly
nontrivial, especially for tests employing a high number of cores; intermittent operating
system activity (aka, jitter) can significantly distort the measurement of short time scales.
For this reason, the benchmark tests were carried out by timing a batch of 20 alm2map +
adjoint_alm2map SHT pairs. For reference, the scaling shown here is relative to unpolarized
spherical harmonics with N4, = 4096 and £, = 12287 and were carried out on the Hyades
cluster of the University of Oslo. The benchmark results are quantified as the wall time
multiplied by the total number of cores, shown in a 3D plot (Figure 3) as a function of the
number of local threads and MPI tasks (always one per node).

Bianchi. (2024). HealpixMPL jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia. Journal of Open Source Software, 3
9(97), 6467. https://doi.org/10.21105/joss.06467.


https://github.com/LeeoBianchi/HealpixMPI.jl
https://github.com/LeeoBianchi/Jommander.jl
https://www.mn.uio.no/astro/english/services/it/help/basic-services/compute-resources.html
https://www.mn.uio.no/astro/english/services/it/help/basic-services/compute-resources.html
https://doi.org/10.21105/joss.06467

The Journal of Open Source Software

700
__,600]
z | N
4 500 N\
5 - N\
% 4001 N\
x § \
g 300 AN
+ 200
=
Z 10

Figure 3: The measured wall time is multiplied by the total number of cores used and plotted as a
function of the number of local threads and MPI tasks used. The total number of cores corresponding to
each column is given by the product of these two quantities.

Increasing the number of threads on a single core, for which no MPl communication is needed,
the scaling results nearly ideal up to ~ 50 cores. For 60 and higher local threads we start
observing a slight slowdown, probably given by the many threads simultaneously trying to
access the same memory, hitting its bandwidth limit.

While switching to a multi-node setup, we introduce, as expected, an overhead given by the
necessary MP| communication whose size, unfortunately, remains constant as we increase the
number of local threads. This leads to the ramp-like shape along the “local threads” axis
shown by the plot. However, the overhead size scales down, even if not perfectly, when we
increase the number of nodes, as the size of the locally stored data will linearly decrease. This
is shown by the relatively flat shape of the plot along the “nodes”-axis.

Acknowledgements

The development of HealpixMPI. j1, which is part of my master's thesis, has been funded by
the University of Milan through a “Thesis Abroad Grant.” Moreover, | acknowledge significant
contributions to this project from Maurizio Tomasi, Martin Reinecke, Hans Kristian Eriksen,
and Sigurd Nzess, as well as the support | received from all the members of Cosmoglobe
collaboration during my stay at the Institute of Theoretical Astrophysics of the University of
Oslo.

References

Byrne, S., Wilcox, L. C., & Churavy, V. (2021). MPLjl: Julia bindings for the message passing
interface. Proceedings of the JuliaCon Conferences, 1(1), 68. https://doi.org/10.21105/
jcon.00068

Eriksen, H. K., O'Dwyer, I. J., Jewell, J. B., Wandelt, B. D., Larson, D. L., Gorski, K. M., Levin,
S., Banday, A. J.,, & Lilje, P. B. (2004). Power spectrum estimation from high-resolution
maps by Gibbs sampling. The Astrophysical Journal Supplement Series, 155(2), 227-241.
https://doi.org/10.1086/425219

Bianchi. (2024). HealpixMPL.jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia. Journal of Open Source Software, 4
9(97), 6467. https://doi.org/10.21105/joss.06467.


https://doi.org/10.21105/jcon.00068
https://doi.org/10.21105/jcon.00068
https://doi.org/10.1086/425219
https://doi.org/10.21105/joss.06467

The Journal of Open Source Software

Euclid Collaboration. (2023). Euclid preparation: XXVIII. Modelling of the weak lensing
angular power spectrum. https://arxiv.org/abs/2302.04507

Gorski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., &
Bartelmann, M. (2005). HEALPix: A framework for high-resolution discretization and fast
analysis of data distributed on the sphere. The Astrophysical Journal, 622(2), 759-771.

https://doi.org/10.1086/427976

Loureiro, A., Whiteaway, L., Sellentin, E., Lafaurie, J. S., Jaffe, A. H., & Heavens, A. F.
(2023). Almanac: Weak lensing power spectra and map inference on the masked sphere.
The Open Journal of Astrophysics, 6. https://doi.org/10.21105/astro.2210.13260

Reinecke, M. (2019). DUCC. In GitLab repository. GitLab. https://gitlab.mpcdf.mpg.de/mtr/
ducc

Reinecke, M., & Seljebotn, D. S. (2013). Libsharp — spherical harmonic transforms revisited.
Astronomy & Astrophysics, 554, A112. https://doi.org/10.1051/0004-6361/201321494

Tomasi, M., & Li, Z. (2021). Healpix.jl: Julia-only port of the HEALPix library (Version 3.0,
p. ascl:2109.028).

Watts, D. J., Basyrov, A., Eskilt, J. R., Galloway, M., Gjerlgw, E., Hergt, L. T., Herman, D.,
lhle, H. T., Paradiso, S., Rahman, F., Thommesen, H., Aurlien, R., Bersanelli, M., Bianchi,
L. A., Brilenkov, M., Colombo, L. P. L., Eriksen, H. K., Franceschet, C., Fuskeland, U., ..
Zhou, Y. (2023). COSMOGLOBE DR1 results: I. Improved Wilkinson microwave anisotropy
probe maps through Bayesian end-to-end analysis. Astronomy &Amp; Astrophysics, 679,
Al43. https://doi.org/10.1051/0004-6361/202346414

Bianchi. (2024). HealpixMPI.jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia. Journal of Open Source Software, 5
9(97), 6467. https://doi.org/10.21105/joss.06467.


https://arxiv.org/abs/2302.04507
https://doi.org/10.1086/427976
https://doi.org/10.21105/astro.2210.13260
https://gitlab.mpcdf.mpg.de/mtr/ducc
https://gitlab.mpcdf.mpg.de/mtr/ducc
https://doi.org/10.1051/0004-6361/201321494
https://doi.org/10.1051/0004-6361/202346414
https://doi.org/10.21105/joss.06467

	Summary
	Statement of need
	The latest SHT engine: DUCC
	Hybrid parallelization of the SHT
	Usage example
	Scaling results
	Acknowledgements
	References

