
InsarViz: An open source Python package for the
interactive visualization of satellite SAR interferometry
data
Margaux Mouchene 1,2¶, Renaud Blanch 2, Erwan Pathier 1, Romain
Montel1, and Franck Thollard 1

1 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000
Grenoble, France 2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble France ¶
Corresponding author

DOI: 10.21105/joss.06440

Software
• Review
• Repository
• Archive

Editor: Pierre de Buyl
Reviewers:

• @JessicaS11
• @kvenkman

Submitted: 20 December 2023
Published: 04 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The deformation of the Earth surface or of man-made infrastructures can be studied using
satellite Synthetic Aperture Radar (SAR) Interferometry (InSAR). Thanks to new satellite
missions and improvements in the complex data processing chains, large amounts of high-quality
InSAR data are now readily available. However, some characteristics of these datasets make
them unsuitable to be studied using conventional (geo)imagery softwares. We present InsarViz,
a new Python tool designed specifically to interactively visualize and analyze large InSAR
datasets.

Statement of needs
Satellite Synthetic Aperture Radar (SAR) Interferometry (InSAR) is a well-established technique
in Earth Observation (EO) that enables very high precision monitoring of ground displacements
(mm/year). This method combines high spatial resolution data (up to a few meters) and
large coverage capabilities (up to continental scale) with a fairly high temporal resolution (a
few days to a few weeks). It is used to study a wide range of phenomena that impact the
Earth surface (e.g. earthquakes, landslides, permafrost evolution, volcanoes, glaciers dynamics,
subsidence, building and infrastructure deformation, etc.).

For several reasons (data availability, non-intuitive radar image geometry, complexity of the
processing, etc.), InSAR has long remained a niche technology and few free open-source
tools have been dedicated to it compared to the widely-used multi-purpose optical imagery.
Most existing tools are focused on data processing (e.g. ROI_PAC (Rosen et al., 2004),
DORIS (DORIS, 2017), GMTSAR (Sandwell et al., 2016), StaMPS (StaMPS, 2018), ISCE
(Rosen et al., 2012), NSBAS (Doin et al., 2011), OrfeoToolBox (Orfeo ToolBox, 2022),
SNAP (SNAP Toolbox, 2022), LICSBAS (Morishita et al., 2020)). Generic remote-sensing
or Geographic Information System (GIS) softwares are limited when used to visualize InSAR
data because of their unusual geometry and formats. Some visualization tools with dedicated
InSAR functionalities, like the pioneer MDX software (MDX, 2020), or the ESA SNAP toolbox
(SNAP Toolbox, 2022), were designed to visualize a single radar image or interferogram.

However, recent spatial missions like the Sentinel-1 mission of the European program COPER-
NICUS, with a systematic background acquisition strategy and an open data policy, provide
unprecedented access to massive SAR datasets. From these new datasets, a network of
thousands of interferograms can be generated over a single area. The consecutive step is a
time-series analysis which produces a spatiotemporal data cube: a layer of this data cube is a

Mouchene et al. (2024). InsarViz: An open source Python package for the interactive visualization of satellite SAR interferometry data. Journal of
Open Source Software, 9(101), 6440. https://doi.org/10.21105/joss.06440.

1

https://orcid.org/0000-0002-8243-3517
https://orcid.org/0000-0001-5506-734X
https://orcid.org/0000-0002-3662-0784
https://orcid.org/0000-0002-4898-2969
https://doi.org/10.21105/joss.06440
https://github.com/openjournals/joss-reviews/issues/6440
https://gricad-gitlab.univ-grenoble-alpes.fr/deformvis/insarviz
https://doi.org/10.5281/zenodo.13477439
http://pdebuyl.be/
https://orcid.org/0000-0002-6640-6463
https://github.com/JessicaS11
https://github.com/kvenkman
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06440


2D map that contains the displacement of each pixel of an image relative to the same pixel in
the reference date image. A typical data cube size is 4000x6000x200, where 4000x6000 are the
spatial dimensions (pixels) and 200 is a typical number of images taken since the beginning of
the spatial mission.

The aforementioned tools are not suited to allow fluid and interactive data visualization of
such large and multifaceted datasets. If data cube visualization is a more generic problem
and an active research topic in EO and beyond, some specifics of InSAR (radar geometry,
wrapped phase, relative measurement in space and in time, multiple types of products needed
for interpretation…) call for a new, dedicated visualization tool.

Overview of functionality
InsarViz was prototyped and designed, and is continuously developed, in close interaction with
the geophysicists (end-users) through interviews and work observations by the developing team
(UX-design). Our focus is on making this tool ergonomic and intuitive, and providing pertinent
functionalities to explore the datasets, while maintaining performance and accuracy (stay true
to data).

InsarViz allows visualization and access to data from the spatiotemporal data cube of InSAR
time-series (displacement maps). When loading such a data cube, the user can visualize and
navigate spatially (general view and synchronized zoomed-in view of a map from the series)
and/or temporally (switch between maps), in radar or ground geometry. Hovering the cursor
on the map directly gives access to the data from the map and from the whole temporal series
(temporal profile drawn on-the-fly). A separate panel can be used to plot and extract data
from selected points or profiles on the map. A parametrized trend can then be fitted and
subtracted from the observed data to discern physical processes. Publication-ready figures of
the maps and plots can easily be exported in multiple common formats.

In future versions of this tool, the user will be able to concurrently load other images (other
products of the processing chain, DEM, etc.) for further analysis (quality assessment, etc.).

The main technical characteristics of the tool are:

• InsarViz is a standalone application that takes advantage of the hardware (i.e. GPU,
SSD hard drive, capability to run on cluster). We choose the Python language for its
well-known advantages (interpreted, readable language, large community) and we use
QT for the graphical user interface and OpenGL for the hardware graphical acceleration.

• InsarViz uses the GDAL library (GDAL/OGR contributors, 2024) to load the data. This
allows to handle all the input formats most widely used by the community (e.g. GeoTIFF).
Moreover, we plan on developing a plug-in data loader template to easily manage custom
data formats in the near future.

• We take advantage of the Python/QT/OpenGL stack to ensure efficient user interaction
with the data. For example, they allow the fluid, rapid switching between large maps
and on-the-fly plotting.

• Visualization tools commonly use aggregation methods (e.g. smoothing, averaging,
clustering) to drastically accelerate image display, but they thus induce observation and
interpretation biases that are detrimental to the user. To avoid those bias, we focus
on staying true to the original data and allowing the user to customize the rendering
manually (color-scale, outliers selection, level-of-detail).

Mouchene et al. (2024). InsarViz: An open source Python package for the interactive visualization of satellite SAR interferometry data. Journal of
Open Source Software, 9(101), 6440. https://doi.org/10.21105/joss.06440.

2

https://doi.org/10.21105/joss.06440


Example Use Case
The following figure shows a screenshot of the ts_viz program of the InsarViz package
on data provided by the Flatsim service (Thollard et al., 2021). This example shows the
displacement of a point in the Line of Sight of the satellite in a period of time that covers the
Pueblo Earthquake (2019/09/19).

Color on the map shows the displacement with respect to the previous date (yellow means
going away from the satellite). The colorbar in the middle allows the user to interactively
change the dynamic of the color on the map. The curve on the right shows the displacement,
in the direction of the satellite, of the point under the mouse (cross). The curve is dynamically
updated while the user moves the mouse on the map.

Figure 1: Visualisation of a data-cube of Mexico. Displacement at the localisation of the Puebla
Earthquake, 2017/09/19

Development Notes
InsarViz is developed on the Université de Grenoble’s GitLab as an open-source package, and
the authors welcome feature suggestions and contributions. We use the pytest package to test
and ensure the code quality.

Acknowledgements
This project was financially supported by CNES as an application of the SENTINEL1 mission.
The authors would like to thank the Editor and the Reviewers for their time and comments
that helped improve the manuscript and the code.

Mouchene et al. (2024). InsarViz: An open source Python package for the interactive visualization of satellite SAR interferometry data. Journal of
Open Source Software, 9(101), 6440. https://doi.org/10.21105/joss.06440.

3

https://doi.org/10.21105/joss.06440


References
Doin, M.-P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., Grandin, R., Pathier,

E., & Pinel, V. (2011). Presentation of the small baseline NSBAS processing chain on a
case example: The etna deformation monitoring from 2003 to 2010 using envisat data.
Fringe Symposium 2011.

DORIS. (2017). Delft University of Technology. https://github.com/TUDelftGeodesy/Doris

GDAL/OGR contributors. (2024). GDAL/OGR geospatial data abstraction software library.
Open Source Geospatial Foundation. https://doi.org/10.5281/zenodo.5884351

MDX. (2020). Jet Propulsion Lab NASA. https://software.nasa.gov/software/NPO-35238-1

Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020).
LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR
automated sentinel-1 InSAR processor. Remote Sensing, 12(3). https://doi.org/10.3390/
rs12030424

Orfeo ToolBox. (2022). [Computer software]. CNES. https://www.orfeo-toolbox.org/
CookBook/

Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing
environment. EUSAR 2012; 9th European Conference on Synthetic Aperture Radar,
730–733.

Rosen, P. A., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry
package released. Eos, Transactions American Geophysical Union, 85(5), 47–47. https:
//doi.org/10.1029/2004EO050004

Sandwell, D., Mellors, R., Tong, X., Xu, X., Wei, M., & Wessel, P. (2016). GMTSAR: An
InSAR processing system based on generic mapping tools. http://topex.ucsd.edu/gmtsar/
tar/GMTSAR_2ND_TEX.pdf

SNAP toolbox. (2022). European Space Agency. https://earth.esa.int/eogateway/tools/snap

StaMPS. (2018). https://github.com/dbekaert/StaMPS

Thollard, F., Clesse, D., Doin, M.-P., Donadieu, J., Durand, P., Grandin, R., Lasserre, C.,
Laurent, C., Deschamps-Ostanciaux, E., Pathier, E., Pointal, E., Proy, C., & Specht, B.
(2021). FLATSIM: The ForM@ter LArge-scale multi-temporal sentinel-1 InterferoMetry
service. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183734

Mouchene et al. (2024). InsarViz: An open source Python package for the interactive visualization of satellite SAR interferometry data. Journal of
Open Source Software, 9(101), 6440. https://doi.org/10.21105/joss.06440.

4

https://github.com/TUDelftGeodesy/Doris
https://doi.org/10.5281/zenodo.5884351
https://software.nasa.gov/software/NPO-35238-1
https://doi.org/10.3390/rs12030424
https://doi.org/10.3390/rs12030424
https://www.orfeo-toolbox.org/CookBook/
https://www.orfeo-toolbox.org/CookBook/
https://doi.org/10.1029/2004EO050004
https://doi.org/10.1029/2004EO050004
http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf
http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf
https://earth.esa.int/eogateway/tools/snap
https://github.com/dbekaert/StaMPS
https://doi.org/10.3390/rs13183734
https://doi.org/10.21105/joss.06440

	Summary
	Statement of needs
	Overview of functionality
	Example Use Case
	Development Notes
	Acknowledgements
	References

