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Summary
Pysewer is a network generator for sewer networks originally designed for rural settlements
in emerging countries with little or no wastewater infrastructure. The network generation
prioritises gravity flow in order to avoid pumping – which can be a source of failure and high
maintenance – where possible. The network dimensioning is based on dry-weather flow.

Based on a few data sources, pysewer generates a complete network based on roads, building
locations, and elevation data. Global water consumption and population assumptions are
included to dimension the sewer diameters. Results are fully-connected sewer networks that
connect all buildings to one or several predefined wastewater treatment plant (WWTP) locations.
By default, the lowest point in the elevation data is set as the WWTP location. The resulting
network contains sewer diameters, building connections, as well as lifting or pumping stations
with pressurised pipes where necessary.

Statement of need
The sustainable management of water and sanitation has been defined as one of the UN’s
sustainable development goals: SDG 6 (UN-Water, 2018). As of 2019, SDG 6 might not be
reached in 2030 despite the progress made, which means that more than half of the population
still lacks safely managed sanitation (UN-Water, 2018).
In order to identify optimal wastewater management at the settlement level, it is necessary to
compare different central or decentral solutions. To achieve this, a baseline is required against
which other scenarios can be compared (Khurelbaatar et al., 2021; van Afferden et al., 2015).
To this end, we developed pysewer – a tool that generates settlement-wide sewer networks,
which connect all the buildings within the settlement boundary or the region of interest to one
or more wastewater treatment plant locations.

The core principle behind pysewer’s development is based on numerical optimization methods.
These methods have been used for sewer network design since the 1960s (Duque et al., 2020;
Holland, 1966; Li & Matthew, 1990; Maurer et al., 2013; Steele et al., 2016), yet most require
detailed or inaccessible input data. Additionally, several Python-based tools employ graph
theory to optimize water distribution, water reuse, and wastewater master planning (Calle et
al., 2023; Friesen et al., 2023; Momeni et al., 2023). However, to our knowledge, there is
currently no well-documented and publicly available (open-source) Python package specifically
designed for generating sewer network layouts using graph theory. This gap is what pysewer
aims to fill.

Pysewer is designed for data-scarce environments, utilizing only minimal data and global
assumptions – thus enabling transferability to a wide range of different regions. At the same
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time, a priori data sources can be substituted with high-resolution data and site-specific
information such as local water consumption and population data to enhance its accuracy
and utility in specific contexts. The generated networks can then be exported (i.e., as a
geopackage (.gpkg) or shapefile (.shp)) in order to utilise the results in preliminary planning
stages, initial cost estimations, scenario development processes or for further comparison to
decentral solutions where the network can be modified. The option to include several treatment
locations also enables users to already plan decentralised networks or favour treatment locations
(i.e., due to local demands or restrictions).

Functionality and key features
Pysewer’s concept is built upon network science, where we combine algorithmic optimisation
using graph theory with sewer network engineering design to generate a sewer network layout.
In the desired layout, all buildings are connected to a wastewater treatment plant (WWTP)
through a sewer network, which utilises the terrain to prioritise gravity flow in order to minimise
the use of pressure sewers. Addressing the intricate challenge of generating sewer network
layouts, particularly in data-scarce environments, is at the forefront of our objectives. Our
approach, therefore, leans heavily towards utilising data that can be easily acquired for a
specific area of interest. Thus, we deploy the following data as input to autonomously generate
a sewer network, with a distinct prioritisation towards gravity flow.

1. Digital Elevation Model (DEM) – to derive the elevation profile and understand topo-
graphic details such as the lowest point (sinks) within the area of interest.

2. Existing road network data – Preferred vector data format in the form of LineString to
map and utilise current infrastructure pathways.

3. Building locations – defined by x, y coordinate points, these points represent service
requirement locations and identify the connection to the network.

4. Site-specific water consumption and population data – to plan/size hydraulic elements
of the sewer network and estimate the sewage flow.

The core functionalities of pysewer include transforming the minimal inputs into an initial
network graph—the foundation for the ensuing design and optimisation process; the generation
of a gravity flow-prioritised sewer network—identifying the most efficient network paths and
positions of the pump and lift stations where required; and the visualisation and exporting
of the generated network—allowing visual inspection of the sewer network attributes and
export of the generated sewer network. Figure 1 provides a visual guide of the distinct yet
interconnected modules within pysewer.

Figure 1: Pysewer’s modular workflow
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Preprocessing and initial network generation
In the preprocessing module, the roads, buildings, and the DEM must all be projected into the
same coordinate reference system (CRS). The road and building data input must be in the
form of either a geopandas (Jordahl et al., 2020) GeoDataFrame or a str which specifies the
path to a file with vector formats such shapefile (.shp), geojson (.geojson) or geopackage
(.gpkg). As for the DEM, the preferred format is a geotiff (.tif). Roads, Buildings and DEM

classes are used to transform the raw data formats into the required format (i.e., geopandas
GeoDataFrame) to create the initial graph network (NetworkX, (Hagberg et al., 2008)), where
nodes represent crucial points such as junctions or buildings and edges to simulate potential
sewer lines. The following measures ensure that the initial layout aligns with the road network
and that there is serviceability to all buildings within the area of interest:

• “Connecting” buildings to the street network using the connect buildings method. This
method adds nodes to the graph to connect the buildings in the network using the
building points.

• Creation of “virtual roads”. Buildings which are not directly connected to the road
network are connected by finding the closest edge to the building, which is then marked
as the closest edge. The nodes are then disconnected from the edges and are added to
the initial connection graph network.

• Simplifying the street network for more efficient graph traversal.
• Setting of the collection point or Wastewater Treatment Plant (WWTP). By default,

the lowest elevation point in the region of interest is set as the location(s) of the WWTP.
Users can manually define the location of the WWTP by using the add_sink method.

After preprocessing, all relevant data is stored as a MultiDiGraph to allow for asymmetric edge
values (e.g., elevation profile and subsequently costs). Figure 2 demonstrates the required
data, its preprocessing and the generation of the initial graph network.

Figure 2: Pysewer preprocessing. Topographic map with the connection graph resulting from the
instantiation of the ModelDomain class (A). Sewer network layout requirements: existing building, roads,
and collection point (WWTP) (B).
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Generating a gravity flow-prioritise sewer network
Within the computational framework of pysewer, the routing and optimisation modules function
as the principal mechanisms for synthesising the sewer network. The objective of the routing
module is to identify the paths through the network, starting from the sink. The algorithm
approximates the directed Steiner tree (the Steiner arborescence) (Hwang & Richards, 1992)
between all sources and the sink by using a repeated shortest path heuristic (RSPH). The routing
module has two solvers to find estimates for the underlying minimum Steiner arborescence
tree problem; these are:

1. The RSPH solver iteratively connects the nearest unconnected node (regarding distance
and pump penalty) to the closest connected network node. The solver can account for
multiple sinks and is well-suited to generate decentralised network scenarios.

2. The RSPH Fast solver derives the network by combining all shortest paths to a single
sink. It is faster but only allows for a single sink.

In a nutshell, these solvers work by navigating through the connection graph (created using
the generate_connection_graph method of the preprocessing module). This method first
simplifies the connection graph by removing any self-loops and setting trench depth node
attributes to 0. It then calculates key parameters such as geometry, distance, profile, initial
edge weights (needed for placing pump stations), and elevation attributes for each edge and
node. The shortest path between the subgraph and terminal nodes in the connection graph is
found using Dijkstra’s Shortest Path Algorithm (Dijkstra, 1959). The RSPH solver repeatedly
finds the shortest path between the subgraph nodes and the closest terminal node, adding the
path to the sewer graph and updating the subgraph nodes and terminal nodes. Terminal nodes
refer to the nodes in the connection graph that need to be connected to the sink. On the other
hand, subgraph nodes are the nodes in the directed routed Steiner tree. These are initially
set to the sink nodes and are updated as the RSPH solver is applied to find the shortest path
between the subgraph and the terminal nodes. This way, all terminal nodes are eventually
connected to the sink.

Subsequently, the optimisation module takes the preliminary network generated by the routing
module and refines it by assessing and incorporating the hydraulic elements of the sewer
network. Here, the hydraulic parameters of the sewer network are calculated. The calculation
focuses on the placement of pump or lifting stations on linear sections between road junctions.
It considers the following three cases:

1. Terrain does not allow for gravity flow to the downstream node (this check uses the
needs_pump attribute from the preprocessing to reduce computational load)—placement
of a pump station is required.

2. Terrain does not require a pump, but the lowest inflow trench depth is too low for
gravitational flow—placement of a lift station is required.

3. Gravity flow is possible within given constraints—the minimum slope is achieved, no
pump or lifting station is required.

As our tool strongly focuses on prioritising gravity flow, a high pump penalty is applied to
minimise the length of the pressure sewers. The pumping penalty expressed as the edge weight
is relative to the trench depth required to achieve minimum slope to achieve self-cleaning
velocities in a gravity sewer. The maximum trench depth 𝑡max required to achieve the minimum
slope is set at 𝑡max = 8𝑚 in the default settings of pysewer. When there is a need to dig
deeper than this predefined value, then a pump is required.

The optimisation module also facilitates the selection of the diameters to be used in the
network and peak flow estimation, as well as the key sewer attributes such as the number of
pump or lifting stations, the length of pressure and gravity sewers, which can be visualised
and exported for further analysis. Figure 3 shows an example of a final sewer network layout
generated after running the calculation of the hydraulics parameters.
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Figure 3: Pysewer optimisation. Final layout of the sewer network.

Visualising and exporting the generated sewer network
The plotting and exporting module generates visual and geodata outputs. It renders the
optimised network design onto a visual map, offering users an intuitive insight into the
proposed infrastructure. Sewer network attributes such as the estimated peak flow, the
selected pipe diameter (exemplified in Figure 4) and the trench profile are provided in the
final GeoDataFrame. They can be exported as a geopackage(.gpkg) or shapefile (.shp) file,
facilitating further analysis and detailed reporting in other geospatial platforms.
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Figure 4: Pysewer visualisation. Attributes of the sewer network layout. Peak flow estimation (A), Pipe
diameters selected (B)
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Software citations
Pysewer was written in Python 3.10.6 and used a suite of open-source software packages that
aided the development process:
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• NetworkX 3.1 (Hagberg et al., 2008)
• Rasterio 1.2.10 (Gillies & others, 2021)
• Numpy 1.25.2 (Harris et al., 2020)
• Matplotlib 3.7.1 (Hunter, 2007)
• Scikit-learn 1.0.2 (Pedregosa et al., 2011)
• GDAL 3.0.2 (GDAL/OGR contributors, 2019)

Author contributions
Conceptualisation: J.F., G.K., and M.v.A.; methodology: J.F., M.S., and D.D.; software
development: M.S. and D.D.; writing – original draft: D.D.; writing – review & editing: D.D,
J.F., M.S., G.K., and M.v.A.

References
Calle, E., Martıńez, D., Buttiglieri, G., Corominas, L., Farreras, M., Saló-Grau, J., Vilà, P.,

Pueyo-Ros, J., & Comas, J. (2023). Optimal design of water reuse networks in cities

Sanne et al. (2024). Pysewer: A Python Library for Sewer Network Generation in Data Scarce Regions. Journal of Open Source Software, 9(104),
6430. https://doi.org/10.21105/joss.06430.

6

https://doi.org/10.21105/joss.06430


through decision support tool development and testing. Npj Clean Water, 6(1), Article 1.
https://doi.org/10.1038/s41545-023-00222-4

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390

Duque, N., Duque, D., Aguilar, A., & Saldarriaga, J. (2020). Sewer Network Layout Selection
and Hydraulic Design Using a Mathematical Optimization Framework. Water, 12(12),
Article 12. https://doi.org/10.3390/w12123337

Friesen, J., Sanne, M., Khurelbaatar, G., & Afferden, M. van. (2023). “OCTOPUS” principle
reduces wastewater management costs through network optimization and clustering. One
Earth, 6(9), 1227–1234. https://doi.org/10.1016/j.oneear.2023.08.005

GDAL/OGR contributors. (2019). GDAL/OGR Geospatial Data Abstraction software Library
(Version v3.0.2) [Computer software]. Open Source Geospatial Foundation. https://doi.
org/10.5281/zenodo.5884351

Gillies, S., & others. (2021). Rasterio: Geospatial raster I/O for Python programmers (Version
v1.2.10). Mapbox. https://github.com/rasterio/rasterio

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring Network Structure, Dynamics,
and Function using NetworkX. Scipy. https://doi.org/10.25080/TCWV9851

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Holland, M. E. (1966). Computer Models of Waste-Water Collection Systems [PhD thesis].
Harvard University.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Hwang, F. K., & Richards, D. S. (1992). Steiner Tree Problems. Networks, 22(1), 55–89.
https://doi.org/10.1002/net.3230220105

Jordahl, K., Bossche, J. V. den, Fleischmann, M., Wasserman, J., McBride, J., Gerard, J.,
Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran,
M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., … Leblanc,
F. (2020). Geopandas (Version v0.8.1). Zenodo. https://doi.org/10.5281/zenodo.3946761

Khurelbaatar, G., Al Marzuqi, B., Van Afferden, M., Müller, R. A., & Friesen, J. (2021).
Data Reduced Method for Cost Comparison of Wastewater Management Scenarios – Case
Study for Two Settlements in Jordan and Oman. Frontiers in Environmental Science, 9.
https://doi.org/10.3389/fenvs.2021.626634

Li, G., & Matthew, R. G. S. (1990). New Approach for Optimization of Urban Drainage
Systems. Journal of Environmental Engineering, 116(5), 927–944. https://doi.org/10.
1061/(ASCE)0733-9372(1990)116:5(927)

Maurer, M., Scheidegger, A., & Herlyn, A. (2013). Quantifying costs and lengths of urban
drainage systems with a simple static sewer infrastructure model. Urban Water Journal,
10(4), 268–280. https://doi.org/10.1080/1573062X.2012.731072

Momeni, A., Chauhan, V., Bin Mahmoud, A., Piratla, K. R., & Safro, I. (2023). Generation
of Synthetic Water Distribution Data Using a Multiscale Generator-Optimizer. Journal
of Pipeline Systems Engineering and Practice, 14(1). https://doi.org/10.1061/jpsea2.
pseng-1358

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

Sanne et al. (2024). Pysewer: A Python Library for Sewer Network Generation in Data Scarce Regions. Journal of Open Source Software, 9(104),
6430. https://doi.org/10.21105/joss.06430.

7

https://doi.org/10.1038/s41545-023-00222-4
https://doi.org/10.1007/BF01386390
https://doi.org/10.3390/w12123337
https://doi.org/10.1016/j.oneear.2023.08.005
https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.5884351
https://github.com/rasterio/rasterio
https://doi.org/10.25080/TCWV9851
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1002/net.3230220105
https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.3389/fenvs.2021.626634
https://doi.org/10.1061/(ASCE)0733-9372(1990)116:5(927)
https://doi.org/10.1061/(ASCE)0733-9372(1990)116:5(927)
https://doi.org/10.1080/1573062X.2012.731072
https://doi.org/10.1061/jpsea2.pseng-1358
https://doi.org/10.1061/jpsea2.pseng-1358
https://doi.org/10.21105/joss.06430


M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, Édouard. (2011). Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http:
//jmlr.org/papers/v12/pedregosa11a.html

Steele, J. C., Mahoney, K., Karovic, O., & Mays, L. W. (2016). Heuristic Optimization Model
for the Optimal Layout and Pipe Design of Sewer Systems. Water Resources Management,
30(5), 1605–1620. https://doi.org/10.1007/s11269-015-1191-8

UN-Water. (2018). Sustainable Development Goal 6: Synthesis Report 2018 on Water and
Sanitation (United Nations Publications). United Nations. ISBN: 978-92-1-101370-2

van Afferden, M., Cardona, J. A., Lee, M.-Y., Subah, A., & Müller, R. A. (2015). A New
Approach to Implementing Decentralized Wastewater Treatment Concepts. Water Science
and Technology, 72(11), 1923–1930. https://doi.org/10.2166/wst.2015.393

Sanne et al. (2024). Pysewer: A Python Library for Sewer Network Generation in Data Scarce Regions. Journal of Open Source Software, 9(104),
6430. https://doi.org/10.21105/joss.06430.

8

http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/s11269-015-1191-8
https://d306pr3pise04h.cloudfront.net/docs/publications%2FSDG6_SR2018.pdf
https://d306pr3pise04h.cloudfront.net/docs/publications%2FSDG6_SR2018.pdf
https://doi.org/10.2166/wst.2015.393
https://doi.org/10.21105/joss.06430

	Summary
	Statement of need
	Functionality and key features
	Preprocessing and initial network generation
	Generating a gravity flow-prioritise sewer network
	Visualising and exporting the generated sewer network

	Acknowledgement
	Software citations
	Author contributions
	References

