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Summary
Good design of planned experiments increases the precision of parameter estimates. In a
dose-response study, for example, the credible intervals for the response curve’s parameters are
shorter when the dose levels have been chosen carefully. The general mathematical framework
that guides the choice of values and weights for the covariates in a regression model is called
optimal design theory. In the special case of nonlinear regression models, a researcher must
specify prior knowledge about the model parameters. Accounting here for a full distribution of
parameter values produces designs that are more robust than designs for a single best guess.
To help compute such designs efficiently for general nonlinear regression models, we propose
the Julia (Bezanson et al., 2017) package Kirstine.jl.

Mathematical Background
Consider a nonlinear regression model with mean function 𝜇 ∶ 𝑋×Θ → ℝ𝑚, known covariance
matrix Σ, and compact design region 𝑋 ⊂ ℝ𝑑, where we want to design an experiment for
estimating the unknown parameter 𝜃. In nonlinear optimal design theory (Fedorov & Leonov,
2013), we represent the design by a probability measure 𝜉 on 𝑋. For every such design measure
we define the normalized information matrix

M(𝜉, 𝜃) = ∫(D𝜃𝜇(𝑥, 𝜃))′Σ−1(D𝜃𝜇(𝑥, 𝜃)) 𝜉(d𝑥),

where D𝜃𝜇 denotes the Jacobian matrix of 𝜇 with respect to 𝜃. To obtain, on average, small
confidence or posterior credible intervals, we aim to construct a design 𝜉∗ that maximizes
a functional 𝜙 of the normalized information matrix, with popular choices being the D- or
A-criterion

𝜙D(M(𝜉, 𝜃)) = log det(M(𝜉, 𝜃)), 𝜙A(M(𝜉, 𝜃)) = − tr(M(𝜉, 𝜃)−1).

Since M(𝜉, 𝜃) still depends on the unknown 𝜃, we either plug in a best guess 𝜃0 and obtain a
locally optimal design problem, or we try to find a Bayesian optimal design that maximizes
the average of 𝜙 with respect to a prior distribution with density 𝑝 ∶ Θ → [0,∞) (Chaloner
& Verdinelli, 1995). Having obtained a candidate design 𝜉∗, we then apply an equivalence
theorem from infinite-dimensional convex analysis to verify that the design 𝜉∗ is indeed optimal.
The setup above can be generalized to designs that are optimal for estimating a transformed
𝑇 (𝜃), or to models where Σ also depends on 𝑥.

To find a candidate design in practice, we must make three simplifications. We first have to
approximate the prior expectation, since the integral is not tractable analytically. Monte-Carlo
(MC) integration

∫𝜙(M(𝜉, 𝜃)) 𝑝(𝜃) d𝜃 ≈ 1
𝑆

𝑆
∑
𝑠=1

𝜙(M(𝜉, 𝜃(𝑠)))
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is a versatile method for that because we can use it with any 𝑝 from which we can draw a
sample 𝜃(1),… , 𝜃(𝑆), 𝑆 ∈ ℕ. Next, we reduce the search space from all probability measures
on 𝑋 to the subset of those that are discrete and have 𝐾 ∈ ℕ design points. The optimal 𝐾∗

is usually not known beforehand, but as long as we do not enforce unique design points, we
may guess at a 𝐾 > 𝐾∗ and will still be able to find the solution. Finally, we have to choose
one of the many proposed algorithms (Ryan et al., 2015) for maximizing the objective function
numerically.

Statement of Need
Currently, most open-source experimental design software is implemented in R. There is also
a Julia package that focuses on factorial design problems but does not address nonlinear
regression. Among the R packages on CRAN, only four deal with nonlinear regression models,
and all of them have to make a tradeoff between speed and flexibility. With MC integration,
thousands of information matrices, each built from 𝐾 Jacobian matrices D𝜃𝜇, have to be
computed for one evaluation of the objective function. In R, these matrix-valued functions are
a performance bottleneck since each call has to allocate new matrix objects. To avoid the
memory overhead, package authors can implement internals in C and pass around pointers
to pre-allocated matrices. However, this requires the users to be proficient in C in order to
supply the Jacobian matrices of their models. Consequently, packages either just accept the
slowdown (Masoudi et al., 2020), recommend using C++ (Overstall et al., 2020), or come with
a small set of models pre-specified (Bornkamp et al., 2023; Foracchia et al., 2004; Nyberg
et al., 2012). Hence a design package is needed where knowledge of only one language is
required for efficiently implementing arbitrary nonlinear regression models.

Kirstine.jl attempts to fill this gap in the design software ecosystem. The package achieves
modeling flexibility through Julia’s multiple dispatch mechanism, and performs matrix op-
erations efficiently by passing object references to BLAS and LAPACK routines. It currently
implements the D- and A-criterion, vector-valued measurements, posterior transformations
of 𝜃 via the Delta method, box-shaped design regions of arbitrary dimension, particle swarm
optimization (Kennedy & Eberhart, 1995), and a variant of Fedorov’s coordinate exchange
algorithm (Yang et al., 2013). Plotting functions for checking the equivalence theorem are
also provided. Locally optimal design is supported implicitly. Since user-defined Julia code
does not inherently incur performance penalties, specific regression models are not supplied.
Instead, users should first define subtypes of NonlinearRegression, Covariate, Parameter,
and CovariateParameterization, and then add methods for a few functions that dispatch on
them. Optionally, one of Julia’s automatic differentiation packages can be used. Kirstine.jl

has a modular and readable code base, which enables users to extend the package’s functional-
ity with drop-in replacements for new criteria, design regions, or even custom optimization
algorithms. Thanks to multiple dispatch, no changes are required in the package internals.
This way, Kirstine.jl provides an additional level of flexibility without sacrificing efficiency.
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