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Summary
The objective of atems is to provide a suite of open source analysis tools (largely in Matlab)
for transmission electron microscopy (TEM) image analysis that are specifically designed for
soot and related carbonaceous particles (e.g., tarballs). This codebase started as a manual
analysis code by Dastanpour & Rogak (2014), with the first automated methods added by
Dastanpour et al. (2016). The current, open source version has been streamlined and expanded
to include a larger suite of automated analysis methods from the literature, as detailed in the
following section. In this regard, a key contribution of this codebase is to provide open source
implementations of multiple analysis methods spanning a range of laboratories. This codebase
places these methods in the same framework, with the goal of enabling intercomparisons of
analysis routines across a range of data.

Figure 1: Sample TEM image of soot demonstrating the aggregate structure, where a is an unlabeled
image containing soot aggregates and b is that same image with the aggregates labeled.

Statement of need
Soot, carbon black, and other carbonaceous particles have important climate, health, and
technological impacts that depend on their morphology. These particles have complex shapes
composed of a collection of small, primary particles in fractal arrangements, as shown in
Figure 1a. TEM images of these particles allow for detailed information about particle
morphology that is unavailable in other characterization techniques. However, extracting
this information requires image analysis across a statistically-significant number of particles,
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with the quality of conclusions improving as the number of characterized particles increases.
For instance, Kelesidis et al. (2020) suggested quantifying at least 400 primary particles per
experimental condition in a premixed flame to get an accurate average primary particle diameter
from manually drawing elipses (that study counted 800 primary particles). In the broader
literature, a few hundred particles per condition seems to be standard, with other authors
having employed between 150 and 400 particles per condition (Liati et al., 2014; Marhaba
et al., 2019; Trivanovic et al., 2019, 2020), depending on the type of analysis. For multiple
conditions, this can quickly expand to over 1000 particles. This characterization is often done
manually, which at a minimum of several minutes per aggregate, is incredibly labour intensive.
Unfortunately, the low contrast (carbonaceous particles on carbon films) and complex particle
morphology of common carbonaceous particles makes automated analysis challenging, requiring
unique analysis methods over those developed for traditional TEM image analysis of many
engineered nanomaterials (Schneider et al., 2012). At the same time, existing automated
methods across the literature are typically only applied to data from a single laboratory, with
few exceptions (Anderson et al., 2017; Sipkens et al., 2021). This limits comparability between
laboratories (Sipkens et al., 2023).

Methods
After loading images (with an automated method provided for doing so), analysis involves two
major steps.

The first step is segmentation of the aggregates from their background. Available methods
include the slider-based manual approach of Dastanpour & Rogak (2014); the common Otsu
method; a modification of Otsu by Dastanpour et al. (2016) that employs morphological
operations to improve segmentation; the k-means approach of Sipkens & Rogak (2021); and
carboseg, which is the convolutional neural network (CNN) approach from Sipkens et al.
(2021). Functionality is also available to prepare (e.g., read and crop image footers) and
export images for external analysis, prior to reading the images in for subsequent analysis.
This enables external extensions, such as the WEKA segmentation method of Altenhoff et
al. (2020). Tools are then available to compute aggregate projected area, perimeter, and
circularity, among other properties. A sampling of segmentations produced by these methods
is presented in Figure 2.

Figure 2: Sample segmentations across a range of methods available in this code. The manual method
corresponds to an updated version of the code development by Dastanpour et al. (2016). The Otsu
segmentation is standard Otsu, without any adaptations. The k-means method is that described by
Sipkens & Rogak (2021). TWS refers to trainable WEKA segmentation based on the method described by
Altenhoff et al. (2020), which makes use of the code enabling external extensions. These first four panels
correspond to images from Sipkens & Rogak (2021). The final panel corresponds to the convolutional
neural network method described by Sipkens et al. (2021).
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Second, this code works to identify primary particles, that is the small, roughly circular
structures inside the aggregates. Available methods include a updated version of the Euclidean
distance mapping–surface-based scale analysis (EDM-SBS) of Bescond et al. (2014), converted
from SciLab to Matlab in association with Sipkens et al. (2021) (functionality between the two
languages resulted in minor differences); the Euclidean distance mapping–watershed (EDM-WS)
method of De Temmerman et al. (2014); the pair correlation method (PCM) of Dastanpour
et al. (2016); the Hough transform method of Kook et al. (2016); and the Hough transform
method of Altenhoff et al. (2020).

General plotting and other utilities (tools.*) are provided to enable further analysis and
visualization (e.g., as in Figure 1b and Figure 2).

Use
This code has been used in a number of studies in the literature. This code was used by
Sipkens et al. (2021) to compare multiple segmentation and primary particle analysis methods.
The code was also used by Trivanovic et al. (2019), Kheirkhah et al. (2020), and Trivanovic
et al. (2020) to perform image analysis of marine engine and flare soot. The k-means method
in this code (Sipkens & Rogak, 2021) was also employed for soot by Li (2022).
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