
extendr: Frictionless bindings for R and Rust
Mossa Merhi Reimert 1, Josiah D. Parry 2, Matt Denwood 1, Maya
Katrin Gussmann 1, Claus O. Wilke 3, Ilia Kosenkov 4, Michael
Milton 5, and Amy Thomason 6

1 Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences,
University of Copenhagen, Denmark 2 Environmental Systems Research Institute (Esri), Redlands, CA,
USA 3 Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA 4
Independent researcher, Finland 5 Walter and Eliza Hall Institute of Medical Research, Australia 6
Atomic Increment Ltd., United Kingdom

DOI: 10.21105/joss.06394

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @dccsillag
• @alpaylan

Submitted: 06 February 2024
Published: 01 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The programming language Rust continues to gain popularity with developers due to a strong
emphasis on safety, performance, and productivity (Perkel, 2020). As a general-purpose,
low-level programming language, Rust has a wide variety of potential uses in both commercial
and research applications where performance is important. Commercial examples include web
development and game development, and in the research domain Rust is increasingly being
used in a wide range of contexts including change point detection (Londschien et al., 2023),
high-performance GIF encoding (Ooms et al., 2023), and agent-based models of disease spread
(Antelmi et al., 2019; Forth et al., 2022; Kshirsagar et al., 2021).

However, typical workflows in research domains, such as disease modelling, often rely on higher-
level programming languages due to lower entry barriers. This results in broader adoption
within scientific communities, compared to the use of low-level languages like C++ and Rust.
The statistical programming language R is one of the most widely used high-level languages in
research. R’s official interpreter is written in C, and it provides a C API as well as tools for
building dynamic libraries in Fortran/C/C++ natively. The ‘Extending R’ book (Chambers,
2017) also describes interfacing with other languages such as Python and Julia.

The strength of R is its ecosystem of packages, the vast majority of which are available
from CRAN. They are primarily written by research scientists, specialists, and professionals.
Another important use case of R packages is being a front-end for other languages. Automated
tooling that provides scaffolding and boilerplate code is widely used to simplify cross-language
integration. For example, embedding C++ code is a good way to resolve performance
bottlenecks within R packages, and this can be easily accomplished using cpp11 (Vaughan et
al., 2023) or Rcpp (Eddelbuettel & François, 2011). Rust demonstrates similar performance
to C++, but it also offers other beneficial features such as declarative memory management,
which provides compile-time guarantees for memory safety in the absence of a garbage collector.

We note that other scientific computing communities have already introduced plug-ins for
Rust, including Python via PyO3, and Julia via jlrs.

This paper introduces a collection of four Rust crates and an R package that collectively make
up the ‘extendr’ project. The goal of this project is to provide (automatic) binding of Rust
to R, using an opinionated and ergonomics-focused suite of tools that facilitate the use of
Rust code within R packages. This is achieved by offering emulation of the R data model
within Rust, integration of Rust tooling in the R-package build systems, a Rust developer
experience in R, and functions for preparing Rust-powered R-packages for submission to CRAN.
An overview of the ‘extendr’ crates and packages as well as comprehensive API documentation

Reimert et al. (2024). extendr: Frictionless bindings for R and Rust. Journal of Open Source Software, 9(99), 6394. https://doi.org/10.21105/joss.
06394.

1

https://orcid.org/0009-0007-9297-1523
https://orcid.org/0000-0001-9910-865X
https://orcid.org/0000-0001-5212-4273
https://orcid.org/0000-0001-5634-5903
https://orcid.org/0000-0002-7470-9261
https://orcid.org/0000-0001-5563-7840
https://orcid.org/0000-0002-8965-2595
https://orcid.org/0000-0001-8240-1614
https://doi.org/10.21105/joss.06394
https://github.com/openjournals/joss-reviews/issues/6394
https://github.com/extendr/extendr
https://doi.org/10.5281/zenodo.12584076
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/dccsillag
https://github.com/alpaylan
https://creativecommons.org/licenses/by/4.0/
https://www.rust-lang.org
https://www.r-project.org
https://cran.r-project.org
https://github.com/PyO3/pyo3
https://github.com/Taaitaaiger/jlrs
https://doi.org/10.21105/joss.06394
https://doi.org/10.21105/joss.06394


is available at extendr.github.io.

Statement of Need
R provides tools for compiling and embedding Fortran, C, and C++ code, with binding through
R’s C-API. However, these raw bindings are not easy for users to navigate. This makes
frameworks facilitating interfacing other languages to R extremely popular. Rcpp (Eddelbuettel
& François, 2011) and cpp11 (Vaughan et al., 2023) for C++, Java via rJava (Urbanek, 2023),
Python with reticulate (Ushey et al., 2023), and JavaScript on the V8 runtime and the V8
R-package (Ooms, 2023) are among the most used. In contrast, bindings between Rust and R,
such as gifski (Ooms et al., 2023), are currently mostly written by hand.

We note that other software packages providing bindings between R and Rust exist. The
Rust crate / R-package roxido / cargo (Dahl, 2021) provides a mechanism for embedding
Rust code within R packages. The savvy interface represents a distilled byproduct of ‘extendr’.
However, ‘extendr’ differs from these implementations in that ‘extendr’ aims at providing an
opinionated API, with a focus on an ergonomic API design inspired by features from Rcpp and
cpp11.

Several existing projects already utilize ‘extendr’. The DataFrame library Polars has bindings
to Python (via py-polars) and to R via polars, where the latter is built with ‘extendr’. The
CRAN package rsgeo provides bindings to geo-rust, allowing R users to take advantage of
highly performant geometric primitives and algorithms written and optimized in Rust.

Another example of scientific work enabled by ‘extendr’ is the changeforest package (Lond-
schien et al., 2023).

Design

Overview
The extendr project provides a suite of software packages, where the aim is to provide a
mechanism for interfacing Rust to R that is comparable in scope to the R/C++ interfaces
provided by Rcpp and cpp11. It consists of the following components:

• extendr-api: a Rust crate integrating R’s data model in Rust, which underlies the
functionality of extendr

• extendr-macros: a Rust crate responsible for auto-generating R wrappers for embedding
Rust within R code

• extendr-engine: a Rust crate that enables launching R sessions from within Rust code,
similar to RInside (Eddelbuettel et al., 2023)

• rextendr: an R package that simplifies the process of embedding Rust code within an R
package, including helping the user to adhere to CRAN rules for publishing Rust-powered
R packages

• libR-sys: a Rust crate providing auto-generated Rust bindings to R’s C-API

Using ‘extendr’ requires both Rust and R to be installed, but no other dependencies are required.
API documentation for all the ‘extendr’ packages are available at extendr.github.io, and the
repositories for ‘extendr’-packages are freely available from GitHub github.com/extendr, under
an MIT license. All hardware/software platforms supported by Rust and R are also supported
by extendr.

Technical details
Most R data is vector-based, including scalar values (which are length-1 vectors). These
vectors are represented in Rust as slices &[T] / &mut [T]. R data may be allocated in Rust,

Reimert et al. (2024). extendr: Frictionless bindings for R and Rust. Journal of Open Source Software, 9(99), 6394. https://doi.org/10.21105/joss.
06394.

2

https://extendr.github.io/
https://crates.io/crates/gifski
https://github.com/dbdahl/cargo-framework
https://github.com/yutannihilation/savvy
https://pola.rs/
https://github.com/pola-rs/polars/tree/main/py-polars
https://github.com/pola-rs/r-polars
https://cran.r-project.org/web/packages/rsgeo/
https://crates.io/crates/geo
https://github.com/mlondschien/changeforest/
https://extendr.github.io/
https://github.com/extendr/
https://doi.org/10.21105/joss.06394
https://doi.org/10.21105/joss.06394


but these are invisible to R’s garbage collector, and thus have to be protected. extendr-api

registers R allocated data in an internal hash-map / dictionary, that stores a reference count
for Rust allocated R data.

A C-function is callable in R if it returns an SEXP and all of its arguments are SEXP - these are
opaque pointers to an internal R representation of data. These are callable in R via .Call. A
Rust function that is exported to R must have all of its arguments and return values convertible
to SEXP. Annotating it with #[extendr] will add a callable C-function in R that converts the
custom data types into SEXP types.

The rextendr package also provides R-level functions: rust_source, which allows arbitrary
Rust code to be evaluated, returning the last value in the block; and rust_function, which
compiles, wraps, and returns arbitrary Rust functions as callable R functions. These two
functions are very similar in scope to the evalCpp and cppFunction functions provided by
Rcpp, and are very versatile, as they can also be used to include third-party crates.

Creating Rust-powered R packages
The rextendr::use_extendr() function can be used to auto-edit an existing user-specified R
package (for example created using usethis::create_package()) to include all of the details
necessary to embed Rust code within the package. This includes Makevars files that adapt the
compilation process of the R package to generate the embedded Rust binary using R’s internal
build system.

This should then be followed by calling rextendr::document(), which provides R wrapper
functions, within which the Rust functions are invoked via the .Call foreign function interface.

For many R package authors, being able to publish their code on CRAN is essential. However,
CRAN has strict rules for publishing packages, including that the number of threads that a
package uses at build & testing must not exceed 2. Uniquely, Rust has a package manager,
which means that R packages have third-party dependencies external to R and CRAN. These
must be “vendored” to ensure package stability (see “Using Rust in CRAN packages”). The
rextendr::use_cran_defaults() and rextendr::vendor_pkgs() will ensure that dependen-
cies are built entirely offline and from vendored sources, which ensures that the resulting R
package is fully CRAN-compliant.

Getting started
Ensure that both R and Rust are installed. Then in an R terminal, the rextendr package can
be installed via:

install.packages("rextendr")

Or, for the latest development version:

remotes::install_github("extendr/rextendr") # installs latest dev-version

Then, an R-package should be constructed - optionally using the usethis R-package (Wickham
et al., 2023), which inspires the design principles of rextendr:

usethis::create_package("exampleRustRpkg")

rextendr::use_extendr()

Finally, the function use_extendr should be used to set up the necessary boilerplate for
compiling Rust code within an R package, and document used to refresh the R function
wrappers (this augments a call to devtools::document()).

rextendr::document()

Reimert et al. (2024). extendr: Frictionless bindings for R and Rust. Journal of Open Source Software, 9(99), 6394. https://doi.org/10.21105/joss.
06394.

3

https://cran.r-project.org/web/packages/using_rust.html
https://www.r-project.org
https://www.rust-lang.org/tools/install
https://doi.org/10.21105/joss.06394
https://doi.org/10.21105/joss.06394


Acknowledgements
Project lead Amy Thomason received a grant from the R-consortium (R Consortium, 2023).

Mossa Merhi Reimert received funding from the Danish Food and Veterinary Administration
for his PhD project.

Claus O. Wilke acknowledges funding from the University of Texas at Austin (Reeder Centennial
Fellowship in Systematic and Evolutionary Biology, Blumberg Centennial Professor in Molecular
Evolution).

We would like to acknowledge Jeroen Ooms for his hellorust (Ooms & Authors of the dependency
Rust crates, 2023), and continuous maintenance of a hand-written embedding of Rust in an R
proof-of-concept project. Their github.com/r-rust contains several examples of hand-crafted
bindings to Rust packages for R, such as gifski (Ooms et al., 2023).

References
Antelmi, A., Cordasco, G., D’Auria, M., De Vinco, D., Negro, A., & Spagnuolo, C. (2019).

On evaluating Rust as a programming language for the future of massive agent-based
simulations. Communications in Computer and Information Science, 1094, 15–28. https:
//doi.org/10.1007/978-981-15-1078-6_2

Chambers, J. M. (2017). Extending R. CRC Press. https://doi.org/10.1201/9781315381305

Dahl, D. B. (2021). Writing R extensions in Rust. https://arxiv.org/abs/2108.07179

Eddelbuettel, D., Francois, R., & Bachmeier, L. (2023). RInside: C++ classes to embed R in
C++ (and C) applications. https://doi.org/10.32614/cran.package.rinside

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08

Forth, J. H., Calvelage, S., Fischer, M., Hellert, J., Sehl-Ewert, J., Roszyk, H., Deutschmann,
P., Reichold, A., Lange, M., Thulke, H.-H., Sauter-Louis, C., Höper, D., Mandyhra, S.,
Sapachova, M., Beer, M., & Blome, S. (2022, September 8). African swine fever virus –
variants on the rise. https://doi.org/10.1101/2022.09.07.506908

Kshirsagar, J. K., Dewan, A., & Hayatnagarkar, H. G. (2021). EpiRust: Towards a framework for
large-scale agent-based epidemiological simulations using Rust language. SIMS Conference
on Simulation and Modelling (SIMS 2020), 475–482. https://doi.org/10.3384/ecp20176475

Londschien, M., Bühlmann, P., & Kovács, S. (2023). Random forests for change point
detection. Journal of Machine Learning Research, 24(216), 1–45. https://doi.org/10.3929/
ethz-b-000585774

Ooms, J. (2023). V8: Embedded JavaScript and WebAssembly engine for R. https://doi.org/
10.32614/cran.package.v8

Ooms, J., & Authors of the dependency Rust crates. (2023). hellorust: Minimal examples of
using Rust code in R. https://doi.org/10.32614/cran.package.hellorust

Ooms, J., Kornel Lesiński, & authors of the dependency Rust crates. (2023). Gifski: Highest
quality GIF encoder. https://doi.org/10.32614/cran.package.gifski

Perkel, J. M. (2020). Why scientists are turning to Rust. Nature, 588(7836, 7836), 185–186.
https://doi.org/10.1038/d41586-020-03382-2

R Consortium. (2023, July 6). R Consortium funded project extendr provides Rust
extensions for R. R Consortium. https://www.r-consortium.org/blog/2023/07/06/
r-consortium-funded-project-extendr-provides-rust-extensions-for-r

Reimert et al. (2024). extendr: Frictionless bindings for R and Rust. Journal of Open Source Software, 9(99), 6394. https://doi.org/10.21105/joss.
06394.

4

https://github.com/r-rust/hellorust
https://github.com/r-rust
https://doi.org/10.1007/978-981-15-1078-6_2
https://doi.org/10.1007/978-981-15-1078-6_2
https://doi.org/10.1201/9781315381305
https://arxiv.org/abs/2108.07179
https://doi.org/10.32614/cran.package.rinside
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1101/2022.09.07.506908
https://doi.org/10.3384/ecp20176475
https://doi.org/10.3929/ethz-b-000585774
https://doi.org/10.3929/ethz-b-000585774
https://doi.org/10.32614/cran.package.v8
https://doi.org/10.32614/cran.package.v8
https://doi.org/10.32614/cran.package.hellorust
https://doi.org/10.32614/cran.package.gifski
https://doi.org/10.1038/d41586-020-03382-2
https://www.r-consortium.org/blog/2023/07/06/r-consortium-funded-project-extendr-provides-rust-extensions-for-r
https://www.r-consortium.org/blog/2023/07/06/r-consortium-funded-project-extendr-provides-rust-extensions-for-r
https://doi.org/10.21105/joss.06394
https://doi.org/10.21105/joss.06394


Urbanek, S. (2023). rJava: Low-level R to Java interface. https://doi.org/10.32614/cran.
package.rjava

Ushey, K., Allaire, J., & Tang, Y. (2023). reticulate: Interface to Python. https://doi.org/10.
32614/CRAN.package.reticulate

Vaughan, D., Hester, J., & François, R. (2023). cpp11: A C++11 interface for R’s C interface.
https://doi.org/10.32614/cran.package.cpp11

Wickham, H., Bryan, J., Barrett, M., & Teucher, A. (2023). usethis: Automate package and
project setup. https://doi.org/10.32614/cran.package.usethis

Reimert et al. (2024). extendr: Frictionless bindings for R and Rust. Journal of Open Source Software, 9(99), 6394. https://doi.org/10.21105/joss.
06394.

5

https://doi.org/10.32614/cran.package.rjava
https://doi.org/10.32614/cran.package.rjava
https://doi.org/10.32614/CRAN.package.reticulate
https://doi.org/10.32614/CRAN.package.reticulate
https://doi.org/10.32614/cran.package.cpp11
https://doi.org/10.32614/cran.package.usethis
https://doi.org/10.21105/joss.06394
https://doi.org/10.21105/joss.06394

	Summary
	Statement of Need
	Design
	Overview
	Technical details
	Creating Rust-powered R packages

	Getting started
	Acknowledgements
	References

