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The following brief overview has been prepared as part of the submission of the GRFolres code1
to the Journal of Open Source Software.

Summary
Gravitational waves (GWs) are generated by the mergers of dense, compact objects like black
holes (BHs) and neutron stars (NSs). This provides an opportunity to study the strong field,
highly dynamical regime of Einstein’s theory of general relativity (GR) at higher curvature
scales than previous observations (Arun & others, 2022; T. Baker et al., 2015; Barack &
others, 2019; Barausse & others, 2020; Gnocchi et al., 2019; Perkins, Yunes, et al., 2021).
It is possible that at such scales modifications to GR may start to manifest. However, in
order to detect such modifications, we need to understand what deviations could look like
in theories beyond GR, in particular in the merger section of the signal in near equal mass
binaries, which are key targets of the LIGO-Virgo-KAGRA network of detectors (and their
future 3G successors). Such predictions necessitate the use of numerical relativity (NR), in
which the (modified) equations of GR are evolved from an initial configuration several orbits
before merger, through the merger period and the subsequent “ringdown”, during which the
gravitational wave signal can be extracted near the computational boundary.

Current waveforms are tested for consistency with GR by measuring parameterised deviations
to the merger, inspiral and ringdown phases (Abbott & others, 2021; Carson & Yagi, 2020a;
Cornish et al., 2011; Krishnendu & Ohme, 2021; Maggio et al., 2023), and not by comparison
to any particular theories. If we obtain predictions for specific models, we can check whether
such parameterised deviations are well-motivated and consistent in alternative theories of
gravity (Arun & others, 2022; Carson & Yagi, 2020b, 2020c; Johnson-McDaniel et al., 2022;
Okounkova et al., 2023; Perkins, Nair, et al., 2021; Shiralilou et al., 2022), and the potential
to extract model parameters from data.

There are many ways to modify GR, one of the simplest being to couple an additional scalar
degree of freedom, which may (if certain conditions are satisfied) result in so-called “hairy”
stationary black hole solutions; that is, black holes with a stable, non trivial configuration of
the scalar field around them (see (Doneva et al., 2024) for a review). An example of this is
the class of Horndeski models (Horndeski, 1974). Cubic Horndeski theories have been studied

1Folres (pronounced fol-res) is a word meaning covers or linings in the Catalan language. It has a specific
application in the tradition of Castells (Human Towers), denoting the second layers of reinforcement above the
base pinya. We use it here in analogy to our understanding of effective field theories (EFTs) of gravity as an
infinite sum of terms organised as a derivative expansion, in which the first one corresponds to GR (with up to 2
derivatives), and the second one to modified theories up to 4 derivatives, which are those that we are able to
simulate with GRFolres.
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in Figueras & França (2022) and an implementation of this is included in GRFolres. Another
more general example within the Horndeski models is the four-derivative scalar-tensor theory
(4𝜕ST), which is the most general theory with up to fourth powers of the derivatives (but
still second order equations of motion). Despite their relative simplicity, they have lacked
well-posed (and thus numerically stable) formulations until relatively recently.

An important breakthrough was made in 2020 by Kov'acs and Reall, who showed that Horndeski
theories are indeed well-posed in a modified version of the harmonic gauge (Kovács & Reall,
2020b, 2020a) – a particular coordinate system already used in NR. Subsequently, several specific
theories within these classes were probed in their highly dynamical and fully non-linear regimes
(Corman et al., 2023; East & Pretorius, 2022; East & Ripley, 2021b, 2021a). The extension
of the results of (Kovács & Reall, 2020b, 2020a) to the alternative “singularity avoiding”
coordinates in (Aresté Saló et al., 2022, 2023; Doneva et al., 2023) offers an alternative gauge
in which to probe questions of hyperbolicity, and may offer stability advantages for certain
cases such as unequal mass ratios, as studied in (Corman et al., 2023). Numerical work on
these theories is still in the early stages of development and many technical details on their
numerical implementation need to be further investigated. Equally, many scientific questions,
concerning our accurate understanding of binary—black-hole phenomenology in alternative
theories of gravity and their implications for tests of GR, also remain unanswered.

The goal of GRFolres is to meet this need for further research, and to provide a model code to
help others develop and test their own implementations. The code is based on the publicly
available NR code GRChombo (Andrade et al., 2022; Clough et al., 2015), which itself uses
the open source Chombo framework (Adams & others, 2015) for solving partial differential
equations (PDEs).

In the following sections we discuss the key features, motivations, and applications of the code.

Key features
GRFolres inherits many of the features of GRChombo and Chombo. Here we list the key
features.

• Stable gauge evolution - The code implements the modified moving puncture gauge that
ensures a well-posed evolution in the weak coupling regime, as proposed in (Aresté Saló
et al., 2022). The precise form of the gauge and its parameters can be changed and
the standard moving puncture gauge is safely recovered by setting certain parameters to
zero.

• Modified gravity theories - The currently available theories in the code are 4𝜕ST and cubic
Horndeski. The code is templated over the theory (in the same way that GRChombo
is templated over a matter class) so that it can easily be changed without major code
modifications. The code also provides an implementation of 4𝜕ST without backreaction
onto the metric (but including the possibility of using the new gauge), to enable
comparison with previous works using the decoupling limit approximation.

• Accuracy - The fields are evolved with a 4th order Runge-Kutta time integration and
their derivatives calculated with the same finite difference stencils used in GRChombo
(4th and 6th order are currently available).

• Boundary Conditions - GRFolres inherits all the available boundary conditions in GR-
Chombo, namely, extrapolating, Sommerfeld (radiative), reflective and periodic.

• Initial Conditions - The current examples use solutions that approximately or trivially
solve the modified energy and momentum constraints of the theory. An elliptic solver
for more general configurations is under development, using a modified CTTK formalism
(Aurrekoetxea et al., 2023; Brady et al., 2023).
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• Diagnostics - GRFolres has routines for monitoring the constraint violation and calculating
the energy densities associated with the different scalar terms in the action, as discussed
in (Aresté Saló et al., 2022, 2023; Doneva et al., 2023). Other diagnostics can be added
as required. We also extract data for the tensor and scalar gravitational waveforms.

• C++ class structure - Following the structure of GRChombo, the GRFolres code is also
written in C++ and uses object oriented programming (OOP) and templating.

• Parallelism - GRChombo uses hybrid OpenMP/MPI parallelism with explicit vectorisation
of the evolution equations via intrinsics, and is AVX-512 compliant.

• Adaptive Mesh Refinement - The code inherits the flexible AMR grid structure of
Chombo, which provides Berger-Oliger style (M. J. Berger & Oliger, 1984) AMR with
block-structured Berger-Rigoutsos grid generation (M. Berger & Rigoutsos, 1991).
Depending on the problem, the user may specify the refinement to be triggered by the
additional degrees of freedom, i.e. the scalar field, or those of the metric tensor.

Statement of Need
As far as we are aware there is currently no other publicly available code that implements the
4𝜕ST theory of modified gravity or the cubic Horndeski theory in (3+1)-dimensional numerical
relativity.

There is at least one private code, based on the PAMR/AMRD and HAD (East et al., 2012;
Neilsen et al., 2007) infrastructure, that was used in the first works to successfully implement
the modified general harmonic gauge for 4𝜕ST (Corman et al., 2023; East & Pretorius, 2022;
East & Ripley, 2021b, 2021a). Since this code uses a Generalised Harmonic Coordinates (GHC)
formulation, it necessitates excision of the interior of black holes, which can be difficult to
implement in practice. As a consequence, many groups in the numerical relativity community
have opted to use singularity avoiding coordinates such as the BSSN (Baumgarte & Shapiro,
1998; Nakamura et al., 1987; Shibata & Nakamura, 1995), Z4C (Bernuzzi & Hilditch, 2010;
Bona et al., 2003) or CCZ4 (Alic et al., 2012, 2013) formulations in the puncture gauge (J. G.
Baker et al., 2006; Campanelli et al., 2006), which do not require the excision of the interior of
black holes from the computational domain. In GRFolres, we use the results of (Aresté Saló et
al., 2022, 2023; Doneva et al., 2023) to extend the well-posed formulations of modified gravity
to singularity avoiding coordinates. This provides an alternative gauge to the modified GHC
one used by other groups. Not only does this provide a valuable comparison to their work, but
also eliminates the need for excision.

There are also a number of (3+1)-dimensional codes that implement the equations for the
additional scalar degree of freedom in Einstein-scalar-Gauss-Bonnet without backreaction
onto the metric tensor, including one implementation using GRChombo (Evstafyeva et al.,
2023), which we have integrated into GRFolres to enable comparison between the methods. In
particular, Canuda (https://bitbucket.org/canuda) (Witek et al., 2019, 2023) which uses the
Einstein Toolkit (http://einsteintoolkit.org/), with its related Cactus (http://cactuscode.org)
(Loffler & others, 2012; Schnetter et al., 2004) and Kranc (http://kranccode.org) (Husa et al.,
2006) infrastructure, was used in (Elley et al., 2022; R. et al., 2023; Richards et al., 2023; Silva
et al., 2021; Witek et al., 2019). Another implementation is based on the Spectral Einstein
Code or SpEC (http://www.black-holes.org/SpEC.html) (Pfeiffer et al., 2003), as used in
(Okounkova, 2020). A neutron star background was considered in (Kuan et al., 2023) with
a modification of SACRA-MPI code (Kiuchi et al., 2017; Yamamoto et al., 2008). Whilst
order-reduced methods like those in (Doneva et al., 2022; Elley et al., 2022; Evstafyeva et al.,
2023; Okounkova et al., 2019, 2020, 2023; Okounkova, 2020; R. et al., 2023; Richards et al.,
2023; Silva et al., 2021; Witek et al., 2019) provide an estimate of the scalar dynamics and
associated energy losses, they may miss information about the fully non-linear impact on the
metric and suffer from the accumulation of secular errors over long inspirals.
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In spherical symmetry several codes have been developed that implement Einstein-scalar-Gauss-
Bonnet (a subset of the 4𝜕ST theory that we include as an example in GRFolres). In particular,
using the NRPy framework (http://astro.phys.wvu.edu/bhathome) (Ruchlin et al., 2018) in
(Doneva et al., 2022), and the private code of Ripley & Pretorius in (R et al., 2023; Ripley
& Pretorius, 2019a, 2019b, 2020a, 2020b), and a modification of the GR1D code (Gerosa et
al., 2016; O’Connor & Ott, 2010). There is also the fully nonlinear spherical code developed
in (Corelli et al., 2023b, 2023a). Spherical codes provide a useful testing ground in which
coordinate ambiguities can be avoided (R et al., 2023), but lack the generality required to
study objects with angular momentum, or binary mergers.

Research projects to date using GRFolres
So far the code has been used to study a range of fundamental physics problems, as listed
here.

• The test field case was used in (Evstafyeva et al., 2023) to model the scalar waves
produced during the ringdown stage of binary black hole coalescence in Einstein-scalar-
Gauss-Bonnet, and quantify the extent to which current and future gravitational wave
detectors could observe the spectrum of scalar radiation emitted.

Figure 1: Contour plot of network signal-to-noise ratio (SNR) for the scalar ringdown of a binary black
hole (BBH) in Einstein-scalar-Gauss-Bonnet gravity at 1 Gpc as observed by the Virgo, Livingston and
Hanford network of detectors at design sensitivity. Taken from (Evstafyeva et al., 2023).

• The regime of validity of effective field theory in collapse and binary evolutions in cubic
Horndeski theories were studied in (Figueras & França, 2020, 2022). It was found
that the mismatch of the gravitational wave strain can be as large as 10%–13% in the
Advanced LIGO mass range for such theories.

Saló et al. (2024). GRFolres: A code for modified gravity simulations in strong gravity. Journal of Open Source Software, 9(98), 6369.
https://doi.org/10.21105/joss.06369.

4

https://doi.org/10.21105/joss.06369


Figure 2: Energy density (in blue) of the scalar field surrounding the binary black holes for the Horndeski
theory at a representative instant of time during the inspiral phase. The apparent horizon of the black
holes is shown in orange. The region where the weak coupling conditions are larger than one is depicted
in brown. Taken from (Figueras & França, 2022).

• In (Aresté Saló et al., 2022), the code was developed and tested, with waveforms for
shift-symmetric theories of Einstein-scalar-Gauss-Bonnet gravity produced for equal mass
binaries.
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Figure 3: Modified gravity waveforms in 4𝜕ST with a shift-symmetric coupling. Taken from (Aresté Saló
et al., 2022).

• In (Aresté Saló et al., 2023), the studies were extended to binary mergers in theories
with spin-induced scalarisation. The clouds formed are dumbbell-like in shape.

Figure 4: The time evolution of the density of the scalar cloud that develops in Einstein-scalar-Gauss-
Bonnet gravity with an exponential coupling, resulting in spin-induced scalarisation. Taken from (Aresté
Saló et al., 2023).

• In (Doneva et al., 2023), the dependence of the conditions for hyperbolicity and weak
coupling were studied for spin-induced scalarisation, and the critical thresholds found for
a number of cases.
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Figure 5: The time evolution of the determinant of the effective metric in a case of spin-induced
scalarisation. When the determinant is negative (in black) outside the apparent horizon (depicted with a
dashed white line), the theory has become ill-posed. Taken from (Doneva et al., 2023).
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