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Summary
Imaginary time Green’s functions encode the static and dynamical response of quantum
systems at thermal equilibrium to external perturbations, such as applied electromagnetic fields.
They therefore represent a direct point of connection between theoretical calculations and
experimental measurements. As a consequence, they appear routinely in quantum many-body
calculations at finite temperature, both for model systems like the Hubbard model (Hubbard,
1963), and in ab-initio electronic structure calculations beyond density functional theory, e.g.,
using Hedin’s GW method (Golze et al., 2019; Hedin, 1965). Highly compact and accurate
representations of imaginary time Green’s functions and related imaginary time-dependent
response functions are therefore an important ingredient in the development of robust and
efficient codes for quantum many-body calculations. However, obtaining such representations
has traditionally been challenging, particularly for low temperature calculations, in which the
functions develop steep gradients.

In the past several years, significant progress has been achieved using low-rank approximations
of the spectral Lehmann representation, which is given by

𝐺(𝜏) = −∫
∞

−∞
𝑑𝜔 𝑒−𝜏𝜔

1 + 𝑒−𝛽𝜔 𝜌(𝜔).

Here, 𝐺(𝜏) is a fermionic single-particle imaginary time Green’s function, and 𝜌(𝜔) is its
corresponding spectral function, which encodes information about the single-particle excitations
of the underlying quantum many-body system. The spectral function always exists, but is
typically not known. However, the existence of this integral representation constrains the
space of possible imaginary time Green’s functions to lie within the image of the integral
operator, which is numerically low-rank, enabling the construction of highly compact basis
representations. The intermediate representation (IR) was introduced first, and used the
singular value decomposition to obtain an orthogonal but non-explicit basis of imaginary time
Green’s functions (Chikano et al., 2018; Shinaoka et al., 2017). The recently-introduced
discrete Lehmann representation (DLR) uses the interpolative decomposition to obtain a
non-orthogonal basis consisting of known exponential functions (Kaye, Chen, & Parcollet,
2022). The number of basis functions required in both representations is similar, and typically
significantly less than the previous state-of-the art methods based on orthogonal polynomials
(Boehnke et al., 2011; Dong et al., 2020; Gull et al., 2018).

The DLR’s use of an explicit basis of simple functions makes many common operations,
including interpolation, integration, Fourier transform, and convolution, simple and highly
efficient. This has led to a variety of recent algorithmic advances: compact Matsubara frequency
meshes in dynamical mean-field theory calculations (Sheng et al., 2023), a stable method to
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calculate the single-particle self-energy via the Dyson equation (LaBollita et al., 2023), an
improved discretization of the mixing Green’s function in the Keldysh formalism (Blommel
et al., 2024; Kaye & Strand, 2023), a fast algorithm to evaluate imaginary time Feynman
diagrams (Kaye, Huang, et al., 2023), and compact representations of three-point correlation
functions (Kiese et al., 2024). It has also yielded immediate applications in computational
physics, for example in low-temperature studies of superconductivity (Cai et al., 2022; Hou
et al., 2024; Tanjaroon Ly et al., 2023). The DLR can be straightforwardly integrated into
existing algorithms and codes, often yielding significant improvements in efficiency, accuracy,
and algorithmic simplicity.

Statement of need
cppdlr is a C++ library which constructs the DLR and implements its standard operations.
The flexible yet high-level interface of cppdlr makes it appealing for use both in small-scale
applications and in existing large-scale software projects. The DLR has previously been
implemented in other programming languages, specifically in Python via pydlr, in Fortran
via libdlr, and in Julia via Lehmann.jl (Chen, 2021; Kaye, Chen, & Strand, 2022; Kaye &
Strand, 2021; Strand & Kaye, 2021), as well as in the sparse-ir library implementing the
IR (Wallerberger et al., 2023). cppdlr nevertheless provides a needed platform for future
developments. First, cppdlr is written in C++, a common language used by many large
projects in the quantum many-body physics community. Second, it offers a high-level user
interface simpler than that of libdlr, enabled by the use of C++ templating and the nda

library (“nda,” n.d.) for array types and BLAS/LAPACK compatibility. These features have,
for example, enabled the implementation of the DLR in the TRIQS library (Parcollet et al.,
2015) for quantum many-body calculations.

cppdlr is distributed under the Apache License Version 2.0 through a public Git repository
(Kaye, Strand, et al., 2023a). The project documentation (Kaye, Strand, et al., 2023b) is
extensive, containing background on the DLR, a user guide describing example programs
packaged with the library, and application interface (API) reference documentation for all
classes and functions. We envision cppdlr as a platform for future algorithmic developments
involving the DLR, and as a go-to tool for applications employing the DLR.
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