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Summary
In recent years, artificial intelligence (AI) has rapidly evolved, particularly in natural language
processing (NLP) with services like OpenAI’s ChatGPT. Likewise, the Internet of Things (IoT)
continues to grow as a key area of ubiquitous computing, exemplified by Shodan, the first IoT
search engine.

Underlying these advancements are high-performance algorithms and data structures relying
on non-cryptographic hash functions, which are characteristically fast, produce statistically
well-distributed bits, exhibit an avalanche effect (where a one-bit change in the input alters
at least half of the output), and are collision resistant. Because cryptographic strength is
unnecessary in these cases, they benefit from the efficiency of non-cryptographic hashes.

MurmurHash3 and its test suite, SMHasher, was developed by Appleby (2011) and is one of
the earliest and most continuously popular hash functions specifically designed to implement
the characteristics mentioned above.

mmh3 was launched in 2011 as a Python extension for MurmurHash3 and has been maintained
ever since. Its API is simple to use for Python programmers, as it offers both one-shot hash
functions and hasher classes that allow incremental updating, whose methods are compliant
to hashlib, a part of the Python Standard Library. The library provides Python wheels (i.e.,
pre-built binary packages) for immediate use on various platforms, including Linux (x86_64,
aarch64, i686, ppc64le, and s390x), Windows (win32, win_amd64, and win_arm64), and
macOS (Intel Mac and Apple Silicon). From version 4.0.0, mmh3 has been published under the
MIT License, an OSI-approved permissive open-source license.

As of September 1, 2024, mmh3 was being downloaded more than 4 million times per month,
and it ranks as the 973th most downloaded PyPI package (of around 566,000 projects), showing
that only 0.17% of the remaining packages in the PyPI ecosystem are more popular (Van
Kemenade et al., 2024). According to PePy, as of September 1, 2024, the total downloads of
this library exceeded 130 millions.

Libraries and organizations that use mmh3 include Shodan, Microsoft Azure SDK for Python,
Apache Iceberg (open table format for analytic datasets), Feast (feature store for machine
learning), PyMilvus (Python SDK for Milvus, an open-source vector database), and pocsuite3
(open-source remote vulnerability testing framework).

Statement of need

AI and High-Performance Computing
AI is one of the most resource-demanding fields in computer science and engineering. To
mitigate this problem, various techniques are employed under main systems, in which non-
cryptographic hash functions play key roles in a number of algorithms and data structures.
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A notable technique is feature hashing (Shi et al., 2009; Weinberger et al., 2009). In its simplest
usage, when given a string-indexed data vector, it converts the vector into an integer-indexed
data vector in which each index is the hash result of the original string index; collision values
are summed. Despite its simple and intuitive usage, a machine-learning process with feature
hashing is statistically guaranteed to be nearly as accurate as its original process. Feature
hashing has been shown to be useful for various situations, including K-means clustering
(Senuma, 2011) and succinct model learning (Senuma & Aizawa, 2016).

Other popular techniques that leverage non-cryptographic hash functions include Bloom Filter
(Bloom, 1970), a compact data structure that tests whether an element is a member of a
certain set (with false positive matches), and MinHash (Broder, 1997), an algorithm that
quickly estimates the similarity of two sets.

mmh3 appears in scholarly papers on various topics, including Indian language NLP suites
(Kakwani et al., 2020), a secure system based on probabilistic structures (Adja et al., 2021),
as well as secure ciphertext deduplication in cloud storage (Tang & Jin, 2024). It has also
appeared in technical books and computer science texts (Gorelick & Ozsvald, 2020; Kumar &
Miglani, 2021; Medjedovic et al., 2022).

Internet of Things
mmh3 is applicable to the IoT field. According to Shodan (2021), Shodan (Matherly, 2017)
uses mmh3 as its fingerprint for a favicon (i.e., an icon associated with a web page or website).
Matherly (2024) explained the adoption of mmh3 due to its speed and compact hash size, noting
that cryptographic guarantees provided by md5 and other hashes were not necessary for their
use case. ZoomEye, another popular IoT search engine, follows Shodan’s convention.

For cybersecurity, Kopriva (2021) reported a method of discovering possible phishing websites
by searching websites with Shodan, whose favicon’s mmh3 hash value was the same as that of a
genuine one. Another use case of mmh3 in this area includes open-source intelligence (OSINT)
activities, such as measuring the popularity of web frameworks and servers, as some users do
not change their default favicon settings specified by applications (Faraday Security, 2022).

Related software
PYMMH (Kihlander & Gusani, 2013) is a pure Python implementation of the MurmurHash3
algorithms. Among various other Python bindings for non-cryptographic hashes, python-

xxhash by Yue Du (Du, 2014) is another popular hash library, featuring xxHash developed by
Yan Collet (Collet, 2014).

Benchmarks
We conducted microbenchmarking experiments to compare the efficiency of Python-C hash
libraries, balancing accuracy, reproducibility, and reliability. Our methodology follows practices
from microbenchmarking literature, including works by Peters (2002), Stinner (2016), Collet
(2020), Gorelick & Ozsvald (2020), Rodríguez-Guerra (2021), and Bernhardt (2023).

Table 1 and Figure 1 summarize the benchmarking results. While the xxh3 family in python-

xxhash 3.5.0 shows superior performance for large inputs, the mmh3 5.0.0 implementation
excels with smaller inputs (common scenarios for non-cryptographic hashes), due to its use of
METH_FASTCALL, an overhead-reducing interface introduced in Python 3.7.

For details, see the documentation of the project: https://mmh3.readthedocs.io/en/latest/
benchmark.html. Additionally, the benchmarking results are publicly available as JSON files in
the repository: https://github.com/hajimes/mmh3-benchmarks.
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Table 1: Benchmarking results for Python extensions. Small data velocity is defined as the inverse of the
mean latency (in microseconds) for inputs in the range of 1–256 bytes. Collet (2020) refers to the results
of original C implementations experimented by the author of xxHash, using a CPU clocked at 3.6–4.9
GHz (ours: 2.4–3.3 GHz).

Hash Width Bandwidth Small Data Velocity cf. Collet (2020)
xxh3_128 128 bits 22.42 GiB/s 8.96 29.6 GiB/s
xxh3_64 64 bits 22.41 GiB/s 9.5 31.5 GiB/s
xxh_64 64 bits 8.90 GiB/s 9.3 9.1 GiB/s
mmh3_128 128 bits 6.91 GiB/s 19.04 N/A
xxh_32 32 bits 6.15 GiB/s 8.91 9.7 GiB/s
mmh3_32 32 bits 2.86 GiB/s 18.41 3.9 GiB/s
sha1 16 bits 1.63 GiB/s 2.4 0.8 GiB/s
md5 128 bits 0.65 GiB/s 1.95 0.6 GiB/s

Figure 1: Latency for small to medium-sized inputs. Lower is better.
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