
mmh3: A Python extension for MurmurHash3
Hajime Senuma 1

1 National Institute of Informatics, Japan
DOI: 10.21105/joss.06124

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @mrshu
• @JPenuchot
• @cassiersg

Submitted: 22 May 2023
Published: 18 January 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
In recent years, artificial intelligence (AI) has rapidly evolved, particularly in natural language
processing (NLP) with services like OpenAI’s ChatGPT. Likewise, the Internet of Things (IoT)
continues to grow as a key area of ubiquitous computing, exemplified by Shodan, the first IoT
search engine.

Underlying these advancements are high-performance algorithms and data structures relying
on non-cryptographic hash functions, which are characteristically fast, produce statistically
well-distributed bits, exhibit an avalanche effect (where a one-bit change in the input alters
at least half of the output), and are collision resistant. Because cryptographic strength is
unnecessary in these cases, they benefit from the efficiency of non-cryptographic hashes.

MurmurHash3 and its test suite, SMHasher, was developed by Appleby (2011) and is one of
the earliest and most continuously popular hash functions specifically designed to implement
the characteristics mentioned above.

mmh3 was launched in 2011 as a Python extension for MurmurHash3 and has been maintained
ever since. Its API is simple to use for Python programmers, as it offers both one-shot hash
functions and hasher classes that allow incremental updating, whose methods are compliant
to hashlib, a part of the Python Standard Library. The library provides Python wheels (i.e.,
pre-built binary packages) for immediate use on various platforms, including Linux (x86_64,
aarch64, i686, ppc64le, and s390x), Windows (win32, win_amd64, and win_arm64), and
macOS (Intel Mac and Apple Silicon). From version 4.0.0, mmh3 has been published under the
MIT License, an OSI-approved permissive open-source license.

As of September 1, 2024, mmh3 was being downloaded more than 4 million times per month,
and it ranks as the 973th most downloaded PyPI package (of around 566,000 projects), showing
that only 0.17% of the remaining packages in the PyPI ecosystem are more popular (Van
Kemenade et al., 2024). According to PePy, as of September 1, 2024, the total downloads of
this library exceeded 130 millions.

Libraries and organizations that use mmh3 include Shodan, Microsoft Azure SDK for Python,
Apache Iceberg (open table format for analytic datasets), Feast (feature store for machine
learning), PyMilvus (Python SDK for Milvus, an open-source vector database), and pocsuite3
(open-source remote vulnerability testing framework).

Statement of need

AI and High-Performance Computing
AI is one of the most resource-demanding fields in computer science and engineering. To
mitigate this problem, various techniques are employed under main systems, in which non-
cryptographic hash functions play key roles in a number of algorithms and data structures.

Senuma. (2025). mmh3: A Python extension for MurmurHash3. Journal of Open Source Software, 10(105), 6124. https://doi.org/10.21105/joss.
06124.

1

https://orcid.org/0000-0001-8542-1768
https://doi.org/10.21105/joss.06124
https://github.com/openjournals/joss-reviews/issues/6124
https://github.com/hajimes/mmh3
https://doi.org/10.5281/zenodo.14609826
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/mrshu
https://github.com/JPenuchot
https://github.com/cassiersg
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06124
https://doi.org/10.21105/joss.06124


A notable technique is feature hashing (Shi et al., 2009; Weinberger et al., 2009). In its simplest
usage, when given a string-indexed data vector, it converts the vector into an integer-indexed
data vector in which each index is the hash result of the original string index; collision values
are summed. Despite its simple and intuitive usage, a machine-learning process with feature
hashing is statistically guaranteed to be nearly as accurate as its original process. Feature
hashing has been shown to be useful for various situations, including K-means clustering
(Senuma, 2011) and succinct model learning (Senuma & Aizawa, 2016).

Other popular techniques that leverage non-cryptographic hash functions include Bloom Filter
(Bloom, 1970), a compact data structure that tests whether an element is a member of a
certain set (with false positive matches), and MinHash (Broder, 1997), an algorithm that
quickly estimates the similarity of two sets.

mmh3 appears in scholarly papers on various topics, including Indian language NLP suites
(Kakwani et al., 2020), a secure system based on probabilistic structures (Adja et al., 2021),
as well as secure ciphertext deduplication in cloud storage (Tang & Jin, 2024). It has also
appeared in technical books and computer science texts (Gorelick & Ozsvald, 2020; Kumar &
Miglani, 2021; Medjedovic et al., 2022).

Internet of Things
mmh3 is applicable to the IoT field. According to Shodan (2021), Shodan (Matherly, 2017)
uses mmh3 as its fingerprint for a favicon (i.e., an icon associated with a web page or website).
Matherly (2024) explained the adoption of mmh3 due to its speed and compact hash size, noting
that cryptographic guarantees provided by md5 and other hashes were not necessary for their
use case. ZoomEye, another popular IoT search engine, follows Shodan’s convention.

For cybersecurity, Kopriva (2021) reported a method of discovering possible phishing websites
by searching websites with Shodan, whose favicon’s mmh3 hash value was the same as that of a
genuine one. Another use case of mmh3 in this area includes open-source intelligence (OSINT)
activities, such as measuring the popularity of web frameworks and servers, as some users do
not change their default favicon settings specified by applications (Faraday Security, 2022).

Related software
PYMMH (Kihlander & Gusani, 2013) is a pure Python implementation of the MurmurHash3
algorithms. Among various other Python bindings for non-cryptographic hashes, python-

xxhash by Yue Du (Du, 2014) is another popular hash library, featuring xxHash developed by
Yan Collet (Collet, 2014).

Benchmarks
We conducted microbenchmarking experiments to compare the efficiency of Python-C hash
libraries, balancing accuracy, reproducibility, and reliability. Our methodology follows practices
from microbenchmarking literature, including works by Peters (2002), Stinner (2016), Collet
(2020), Gorelick & Ozsvald (2020), Rodríguez-Guerra (2021), and Bernhardt (2023).

Table 1 and Figure 1 summarize the benchmarking results. While the xxh3 family in python-

xxhash 3.5.0 shows superior performance for large inputs, the mmh3 5.0.0 implementation
excels with smaller inputs (common scenarios for non-cryptographic hashes), due to its use of
METH_FASTCALL, an overhead-reducing interface introduced in Python 3.7.

For details, see the documentation of the project: https://mmh3.readthedocs.io/en/latest/
benchmark.html. Additionally, the benchmarking results are publicly available as JSON files in
the repository: https://github.com/hajimes/mmh3-benchmarks.

Senuma. (2025). mmh3: A Python extension for MurmurHash3. Journal of Open Source Software, 10(105), 6124. https://doi.org/10.21105/joss.
06124.

2

https://mmh3.readthedocs.io/en/latest/benchmark.html
https://mmh3.readthedocs.io/en/latest/benchmark.html
https://github.com/hajimes/mmh3-benchmarks
https://doi.org/10.21105/joss.06124
https://doi.org/10.21105/joss.06124


Table 1: Benchmarking results for Python extensions. Small data velocity is defined as the inverse of the
mean latency (in microseconds) for inputs in the range of 1–256 bytes. Collet (2020) refers to the results
of original C implementations experimented by the author of xxHash, using a CPU clocked at 3.6–4.9
GHz (ours: 2.4–3.3 GHz).

Hash Width Bandwidth Small Data Velocity cf. Collet (2020)
xxh3_128 128 bits 22.42 GiB/s 8.96 29.6 GiB/s
xxh3_64 64 bits 22.41 GiB/s 9.5 31.5 GiB/s
xxh_64 64 bits 8.90 GiB/s 9.3 9.1 GiB/s
mmh3_128 128 bits 6.91 GiB/s 19.04 N/A
xxh_32 32 bits 6.15 GiB/s 8.91 9.7 GiB/s
mmh3_32 32 bits 2.86 GiB/s 18.41 3.9 GiB/s
sha1 16 bits 1.63 GiB/s 2.4 0.8 GiB/s
md5 128 bits 0.65 GiB/s 1.95 0.6 GiB/s

Figure 1: Latency for small to medium-sized inputs. Lower is better.

Acknowledgements
The author extends sincere gratitude to Akiko Aizawa for her helpful comments on this paper.
Appreciation is also given to all those involved in the development and maintenance of mmh3.
Special thanks go to Micha Gorelick, who made the first pull request to the project and later
introduced the library in her technical book (Gorelick & Ozsvald, 2020).

Senuma. (2025). mmh3: A Python extension for MurmurHash3. Journal of Open Source Software, 10(105), 6124. https://doi.org/10.21105/joss.
06124.

3

https://doi.org/10.21105/joss.06124
https://doi.org/10.21105/joss.06124


References
Adja, Y. C. E., Hammi, B., Serhrouchni, A., & Zeadally, S. (2021). A blockchain-based

certificate revocation management and status verification system. Computers & Security,
104, 102209. https://doi.org/10.1016/j.cose.2021.102209

Appleby, A. (2011). MurmurHash3 and SMHasher. https://github.com/aappleby/smhasher

Bernhardt, M. (2023). On pinning and isolating CPU cores. https://manuel.bernhardt.io/
posts/2023-11-16-core-pinning/

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7), 422–426. https://doi.org/10.1145/362686.362692

Broder, A. Z. (1997). On the resemblance and containment of documents. Proceedings.
Compression and Complexity of SEQUENCES 1997, 21–29. https://doi.org/10.1109/
SEQUEN.1997.666900

Collet, Y. (2014). xxHash. https://github.com/Cyan4973/xxHash

Collet, Y. (2020). xxHash: Performance comparison (2020). https://github.com/Cyan4973/
xxHash/wiki/Performance-comparison

Du, Y. (2014). xxhash. https://github.com/ifduyue/python-xxhash

Faraday Security. (2022). Understanding Spring4Shell. https://faradaysec.com/
understanding-spring4shell/

Gorelick, M., & Ozsvald, I. (2020). High performance Python: Practical performant program-
ming for humans (2nd edition). O’Reilly Media. ISBN: 978-1-4920-5502-0

Kakwani, D., Kunchukuttan, A., Golla, S., N. C., G., Bhattacharyya, A., Khapra, M. M.,
& Kumar, P. (2020). IndicNLPSuite: Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian languages. Findings of the Association
for Computational Linguistics: EMNLP 2020, 4948–4961. https://doi.org/10.18653/v1/
2020.findings-emnlp.445

Kihlander, F., & Gusani, S. (2013). PYMMH3. https://github.com/wc-duck/pymmh3

Kopriva, J. (2021). Hunting phishing websites with favicon hashes. SANS Internet Storm
Center. https://isc.sans.edu/diary/27326

Kumar, N., & Miglani, A. (2021). Probabilistic data structures for blockchain-based Internet
of Things applications. CRC Press. https://doi.org/10.1201/9781003080046

Matherly, J. (2017). Complete guide to shodan: Collect. Analyze. Visualize. Make internet
intelligence work for you. (Version 2017-08-23). Shodan.

Matherly, J. (2024). Deep dive: http.favicon. Shodan. https://blog.shodan.io/
deep-dive-http-favicon/

Medjedovic, D., Tahirovic, E., & Dedovic, I. (2022). Algorithms and data structures for
massive datasets. Manning. ISBN: 978-1-61729-803-5

Peters, T. (2002). Algorithms: introduction. In A. Martelli & D. Ascher (Eds.), Python
cookbook (1st edition). O’Reilly Media.

Rodríguez-Guerra, J. (2021). Is GitHub actions suitable for running benchmarks? Quansight
Labs. https://labs.quansight.org/blog/2021/08/github-actions-benchmarks

Senuma, H. (2011). K-means clustering with feature hashing. Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Student Session, 122–126.

Senuma, H., & Aizawa, A. (2016). Learning succinct models: Pipelined compression with

Senuma. (2025). mmh3: A Python extension for MurmurHash3. Journal of Open Source Software, 10(105), 6124. https://doi.org/10.21105/joss.
06124.

4

https://doi.org/10.1016/j.cose.2021.102209
https://github.com/aappleby/smhasher
https://manuel.bernhardt.io/posts/2023-11-16-core-pinning/
https://manuel.bernhardt.io/posts/2023-11-16-core-pinning/
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash/wiki/Performance-comparison
https://github.com/Cyan4973/xxHash/wiki/Performance-comparison
https://github.com/ifduyue/python-xxhash
https://faradaysec.com/understanding-spring4shell/
https://faradaysec.com/understanding-spring4shell/
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://github.com/wc-duck/pymmh3
https://isc.sans.edu/diary/27326
https://doi.org/10.1201/9781003080046
https://blog.shodan.io/deep-dive-http-favicon/
https://blog.shodan.io/deep-dive-http-favicon/
https://labs.quansight.org/blog/2021/08/github-actions-benchmarks
https://doi.org/10.21105/joss.06124
https://doi.org/10.21105/joss.06124


L1-regularization, hashing, Elias–Fano indices, and quantization. Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics: Technical Papers,
2774–2784.

Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., & Vishwanathan, S. V. N. (2009).
Hash kernels for structured data. Journal of Machine Learning Research, 10, 2615–2637.

Shodan. (2021). It’s the MMH3 hash of the http.html property. See: PyPI mmh3. In Twitter.
https://twitter.com/shodanhq/status/1395501365456261122

Stinner, V. (2016). My journey to stable benchmark. https://vstinner.github.io/
journey-to-stable-benchmark-system.html

Tang, X., & Jin, L. (2024). Data splitting based double layer encryption for secure cipher-
text deduplication in cloud storage. 2024 IEEE 17th International Conference on Cloud
Computing (CLOUD), 153–163. https://doi.org/10.1109/CLOUD62652.2024.00027

Van Kemenade, H., Si, R., & Dollenstein, Z. (2024). Hugovk/top-pypi-packages: Release
2024.09 (Version 2024.09). Zenodo. https://doi.org/10.5281/zenodo.13624792

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., & Attenberg, J. (2009). Feature
hashing for large scale multitask learning. Proceedings of the 26th International Conference
on Machine Learning. https://doi.org/10.1145/1553374.1553516

Senuma. (2025). mmh3: A Python extension for MurmurHash3. Journal of Open Source Software, 10(105), 6124. https://doi.org/10.21105/joss.
06124.

5

https://twitter.com/shodanhq/status/1395501365456261122
https://vstinner.github.io/journey-to-stable-benchmark-system.html
https://vstinner.github.io/journey-to-stable-benchmark-system.html
https://doi.org/10.1109/CLOUD62652.2024.00027
https://doi.org/10.5281/zenodo.13624792
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.21105/joss.06124
https://doi.org/10.21105/joss.06124

	Summary
	Statement of need
	AI and High-Performance Computing
	Internet of Things

	Related software
	Benchmarks
	Acknowledgements
	References

