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Summary
The absorption and emission of light by exoplanet atmospheres encode details of atmospheric
composition, temperature, and dynamics. Fundamentally, simulating these processes requires
detailed knowledge of the opacity of gases within an atmosphere. When modeling broad
wavelength ranges at high resolution, such opacity data, for even a single gas, can take up
multiple gigabytes of system random-access memory (RAM). This aspect can be a limiting
factor when considering the number of gases to include in a simulation, the sampling strategy
used for inference, or even the architecture of the system used for calculations. Here, we
present cortecs, a Python tool for compressing opacity data. cortecs provides flexible
methods for fitting the temperature, pressure, and wavelength dependencies of opacity data
and for evaluating the opacity with accelerated, GPU-friendly methods. The package is actively
developed on GitHub (https://github.com/arjunsavel/cortecs), and it is available for download
with pip and conda.

Statement of need
Observations with the latest high-resolution spectrographs (e.g., IGRINS / Gemini South,
ESPRESSO / VLT, MAROON-X / Gemini North; Mace et al. (2018); Seifahrt et al. (2020);
Pepe et al. (2021)) have motivated RAM-intensive simulations of exoplanet atmospheres at
high spectral resolution. cortecs enables these simulations with more gases and on a broader
range of computing architectures by compressing opacity data.

Broadly, generating a spectrum to compare against recent high-resolution data requires solving
the radiative transfer equation over tens of thousands of wavelength points (e.g., Beltz et al.,
2023; Gandhi et al., 2023; Line et al., 2021; Maguire et al., 2023; Prinoth et al., 2023; Savel
et al., 2022; Wardenier et al., 2023). To decrease computational runtime, some codes have
parallelized the problem on GPUs (e.g., Lee et al., 2022; Line et al., 2021). However, GPUs
cannot in general hold large amounts of data in their video random-access memory (VRAM)
(e.g., Ito et al., 2017); only the cutting-edge, most expensive GPUs are equipped with VRAM
in excess of 30 GB (such as the NVIDIA A100 or H100). RAM and VRAM management is
therefore a clear concern when producing high-resolution spectra.

How do we decrease the RAM footprint of these calculations? By far the largest contributor to
the RAM footprint, at least as measured on disk, is the opacity data. For instance, the opacity
data for a single gas species across the wavelength range of the Immersion GRating INfrared
Spectrometer spectrograph (IGRINS, Mace et al., 2018) takes up 2.1 GB of non-volatile
memory (i.e., the file size is 2.1 GB) at float64 precision and at a resolving power of 400,000
(as used in Line et al. (2021); with 39 temperature points and 18 pressure points, using, e.g.,
the Polyansky et al. (2018) water opacity tables). In many cases, not all wavelengths need to
be loaded, e.g. if the user is down-sampling the resolution of their opacity function. Even so,
it stands to reason that decreasing the amount of RAM/VRAM consumed by opacity data
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would strongly decrease the total amount of RAM/VRAM consumed by the radiative transfer
calculation.

One solution is to isolate redundancy: While the wavelength dependence of opacity is sharp
for many gases, the temperature and pressure dependencies are generally smooth and similar
across wavelengths (e.g., Barber et al., 2014; Coles et al., 2019; Polyansky et al., 2018). This
feature implies that the opacity data should be compressible without significant loss of accuracy
at the spectrum level.

While our benchmark case (see the Benchmark section below) demonstrates the applicability of
cortecs to high-resolution opacity functions of molecular gases, the package is general and the
compression/decompression steps of the package can be applied to any opacity data in HDF5
format that has pressure and temperature dependence, such as the opacity of neutral atoms or
ions. Our benchmark only shows, however, that the amounts of error from our compression
technique is reasonable in the spectra of exoplanet atmospheres at pressures greater than a
microbar for a single composition. This caveat is important to note for a few reasons:

1. Based on error propagation, the error in the opacity function may be magnified in the
spectrum based on the number of cells that are traced during radiative transfer. The
number of spatial cells used to simulate exoplanet atmospheres (in our case, 100) is
small enough that the cortecs error is not large at the spectrum level.

2. Exoplanet atmospheres are often modeled in hydrostatic equilibrium at pressures greater
than a microbar (e.g., Barstow et al., 2020; Showman et al., 2020). When modeling
atmospheres in hydrostatic equilibrium, the final spectrum essentially maps to the altitude
at which the gas becomes optically thick. If cortecs-compressed opacities were used
to model an optically thin gas over large path lengths, however, then smaller opacities
would be more important. cortecs tends to perform worse at modeling opacity functions
that jump from very low to very high opacities, so it may not perform optimally in these
optically thin scenarios.

3. The program may perform poorly for opacity functions with sharp features in their
temperature–pressure dependence (e.g., the Lyman series transitions of hydrogen, Kurucz,
2017). That is, the data may require so many parameters to be fit that the compression
is no longer worthwhile.

Methods
cortecs seeks to compress redundant information by representing opacity data not as the
opacity itself but as fits to the opacity as a function of temperature and pressure. We generally
refer to this process as compression as opposed to fitting to emphasize that we do not seek to
construct physically motivated, predictive, or comprehensible models of the opacity function.
Rather, we simply seek representations of the opacity function that consume less RAM/VRAM.
The compression methods we use are lossy — the original opacity data cannot be exactly
recovered with our methods. We find that the loss of accuracy is tolerable for at least the hot
Jupiter emission spectroscopy application (see Benchmark below).

We provide three methods of increasing complexity (and flexibility) for compressing and
decompressing opacity: polynomial-fitting, principal components analysis (PCA, e.g., Jolliffe &
Cadima, 2016) and neural networks (e.g., Alzubaidi et al., 2021). The default neural network
architecture is a fully connected neural network; the user can specify the desired hyperparameters,
such as number of layers, neurons per layer, and activation function. Alternatively, any keras

model (Chollet, 2015) can be passed to the fitter. Each compression method is paired with
a decompression method for evaluating opacity as a function of temperature, pressure, and
wavelength. These decompression methods are tailored for GPUs and are accelerated with the
JAX code transformation framework (Bradbury et al., 2018). An example of this reconstruction
is shown in Figure 1. In the figure, opacities less than 10−60 are ignored. This is because, to
become optically thick at a pressure of 1 bar and temperature of 1000 K, a column would need
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to be nearly 1034m long. Here we show a brief derivation of this. The length of the column,
𝑑𝑠 is 𝑑𝑠 = 𝜏

𝛼 , where 𝜏 is the optical depth, and 𝛼 is the absorption coefficient. Setting 𝜏 = 1,
we have 𝑑𝑠 = 1

𝛼 . The absorption coefficient is the product of the opacity and the density of
the gas: 𝑑𝑠 = 1

𝜅𝜆𝜌
. Therefore,𝑑𝑠 = 1

𝜅𝜆𝜌
. The density of the gas 𝜌 is the pressure divided by

the product of the temperature and the gas constant: 𝜌 = 𝑃
𝑘𝐵𝑇𝜇 for mean molecular weight

𝜇. This leads to the final equation for the column length: 𝑑𝑠 = 𝑘𝐵𝑇𝜇
𝑃𝜅𝜆

. For CO, the mean
molecular weight is 28.01 g/mol. Plugging in, we arrive at 𝑑𝑠 ≈ 1034m (roughly 1017 parsecs)
for 𝜅𝜆 = 10−33 cm2/g, which is equivalent to roughly a cross-section of 𝜎𝜆 = 10−60 m2.

Figure 1: Top panel: The original opacity function of CO (Rothman et al., 2010) (solid lines) and its
cortecs reconstruction (transparent lines) over a large wavelength range and at multiple temperatures
and pressures. Bottom panel: the absolute residuals between the opacity function and its cortecs

reconstruction. 𝜎𝜆 is the opacity, in units of square meters. We cut off the opacity at 10−104, explaining
the shape of the residuals in teal and dark red. Note that opacities less than 10−60 are not generally
relevant for the benchmark presented here; an opacity of 𝜎𝜆 = 10−60 would require a column nearly
1034m long to become optically thick at a pressure of 1 bar and temperature of 1000 K.

Workflow
A typical workflow with cortecs involves the following steps:

1. Acquiring: Download opacity data from a source such as the ExoMol database (Tennyson
et al., 2016) or the HITRAN database (Gordon et al., 2017).

2. Fitting: Compress the opacity data with cortecs’s fit methods.
3. Saving: Save the compressed opacity data (the fitted parameters) to disk.
4. Loading: Load the compressed opacity data from disk in whatever program you’re

applying the data—e.g., within your radiative transfer code.
5. Decompressing: Evaluate the opacity with cortecs’s eval methods.

The accuracy of these fits may or may not be suitable for a given application. It is important to
test that the error incurred using cortecs does not impact the results of your application—for
instance, by using the cortecs.fit.metrics.calc_metrics function to calculate the error
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incurred by the compression and by calculating spectra with and without using cortecs-
compressed opacities. We provide an example of such a benchmarking exercise below.

Benchmark: High-resolution retrieval of WASP-77Ab
As a proof of concept, we perform a parameter inference exercise (a “retrieval,” Madhusudhan
& Seager, 2009) on the high-resolution thermal emission spectrum of the fiducial hot Jupiter
WASP-77Ab (August et al., 2023; Line et al., 2021; Mansfield et al., 2022) as observed at
IGRINS. The retrieval pairs PyMultiNest (Buchner et al., 2014) sampling with the CHIMERA

radiative transfer code (Line et al., 2013), with opacity from H2O (Polyansky et al., 2018),
CO (Rothman et al., 2010), CH4 (Hargreaves et al., 2020), NH3 (Coles et al., 2019), HCN
(Barber et al., 2014), H2S (Azzam et al., 2016), and H2 −H2 collision-induced absorption
(Karman et al., 2019). The non-compressed retrieval uses the data and retrieval framework
from (Line et al., 2021), run in an upcoming article (Savel et al. 2024, submitted). For this
experiment, we use the PCA-based compression scheme implemented in cortecs, preserving 2
principal components and their corresponding weights as a function for each wavelength as a
lossy compression of the original opacity data.

Using cortecs, we compress the input opacity files by a factor of 13. These opacity data
(as described earlier in the paper) were originally stored as 2.1 GB .h5 files containing 39
temperature points, 18 pressure points, and 373,260 wavelength points. The compressed
opacity data are stored as a 143.1 MB .npz file, including the PCA coefficients and PCA
vectors (which are reused for each wavelength point). These on-disk memory quotes are
relatively faithful to the in-memory RAM footprint of the data when stored as numpy arrays
(2.1 GB for the uncompressed data and 160 MB for the compressed data). Reading in the
original files takes 1.1 ± 0.1 seconds, while reading in the compressed files takes 24.4 ± 0.3
ms. Accessing/evaluating a single opacity value takes 174.0 ± 0.5 ns for the uncompressed
data and 789 ± 5 ns for the compressed data. All of these timing experiments are performed
on a 2021 MacBook Pro with an Apple M1 Pro chip and 16 GB of RAM.

Importantly, we find that our compressed-opacity retrieval yields posterior distributions (as
plotted by the corner package, Foreman-Mackey, 2016) and Bayesian evidences that are
consistent with those from the benchmark retrieval using uncompressed opacity (Figure 2) within
a comparable runtime. The two posterior distributions exhibit slightly different substructure,
which we attribute to the compressed results requiring 10% more samples to converge (about
5 hours of extra runtime on a roughly 2 day-long calculation) and residual differences between
the compressed and uncompressed opacities. The results from this exercise indicate that
our compression/decompression scheme is accurate enough to be used in at least some
high-resolution retrievals.
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Figure 2: The posterior distributions for our baseline WASP-77Ab retrieval (teal) and our retrieval using
opacities compressed by cortecs (gold).

Method
Compression
factor

Median absolute
deviation

Compression
time (s)

Decompression
time (s)

PCA 13 0.30 2.6 ×101 2.3 ×102
Polynomials 44 0.24 7.8×102 3.6×103
Neural
network

9 2.6 1.4×107 3.6×104

Comparison of compression methods used for the full HITEMP CO line list (Rothman et al.,
2010) over the IGRINS wavelength range at a resolving power of 250,000, cumulative for all
data points. Note that the neural network compression performance and timings are only
assessed at a single wavelength point and extrapolated over the full wavelength range.
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