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Summary
Computational models governed by partial differential equations (PDEs) are frequently used by
engineers to optimize the performance of various physical systems through decisions relating to
their configuration (optimal design) and operation (optimal control). However, the ability to
make optimal choices is often hindered by uncertainty, such as uncertainty in model parameters
(e.g., material properties) and operating conditions (e.g., forces on a structure). The need to
account for these uncertainties in order to arrive at robust and risk-informed decisions thus
gives rise to problems of optimization under uncertainty (OUU) (D. P. Kouri & Shapiro, 2018).

SOUPy is a Python library for solving PDE-constrained optimization problems with uncertain
parameters, where we use the term parameters broadly to refer to sources and initial/boundary
conditions in addition to PDE coefficients. The optimization problem is defined by a risk
measure over a given quantity of interest (QoI), which is present as either an optimization
objective or constraint (as in chance-constrained optimization). Specific attention is given to
the case where the uncertain parameters are formally infinite dimensional (e.g., Gaussian random
fields). The software allows users to supply the underlying PDE model, quantity of interest,
and penalty terms, and provides implementations for commonly used risk measures, including
expectation, variance, and superquantile/conditional value-at-risk (CVaR) (Rockafellar &
Uryasev, 2000), as well as derivative-based optimizers. SOUPy leverages FEniCS (Logg et
al., 2012) for the formulation, discretization, and solution of PDEs, and the framework of
hIPPYlib (U. Villa et al., 2018; Umberto Villa et al., 2021) for sampling from random fields and
automating adjoint-based derivative computation, while also providing interfaces to existing
optimization algorithms in SciPy.

Statement of need
Problems of PDE-constrained optimization under uncertainty arise due to the ubiquity of
uncertainty in natural and engineered systems. In deterministic PDE-constrained optimization,
the goal is typically to optimize a quantity of interest (QoI) that is a function of the system’s state
and quantifies its performance, where the optimization and state variables are related through
the underlying PDE model. Compared to this deterministic counterpart, PDE-constrained
OUU involves an added layer of complexity, since the QoI becomes a random variable due to its
dependence on the uncertain model parameters. In OUU, the cost functional and/or constraints
are instead given in terms of risk measures, which are statistical quantities summarizing the
QoI’s distribution. A canonical example of such a risk measure is the expected value of the
QoI, though other measures that account for the tail behavior of the distribution such as the
variance, or superquantile/CVaR are common choices. Computation of risk measures typically
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requires sampling or quadrature methods to approximate the integral over the distribution
of the uncertain parameter. This results in a complex optimization problem in which each
evaluation of the optimization objective requires numerous solutions of the underlying PDE.

Several open-source software packages such as dolfin-adjoint (Mitusch et al., 2019) and
hIPPYlib provide the capabilities for solving PDE-constrained optimization problems with
generic PDEs using derivatives computed by adjoint sensitivity methods. However, these
packages largely focus on the deterministic setting. On the other hand, the Rapid Optimization
Library (ROL) (D. Kouri et al., 2017), released as a part of Trilinos (Trilinos Project Team,
2024), provides advanced algorithms for both deterministic and stochastic (risk measure)
optimization, where support for PDE-constrained OUU is enabled by its interfaces with
user-supplied state and adjoint PDE solvers.

SOUPy aims to provide a unified platform to formulate and solve PDE-constrained OUU
problems using efficient derivative-based optimization methods. Users can supply the definitions
for the PDE constraint, QoI, and additional penalty terms that account for the cost of
design/control, and are then given the option to choose from a suite of risk measures to
optimize. To this end, SOUPy makes use of FEniCS, an open source finite element library,
to create and solve the underlying PDEs. The unified form language (UFL) (Alnæs et al.,
2014) used by FEniCS allows users to conveniently define the PDE, QoI, and penalty terms in
their variational forms. SOUPy is also integrated with hIPPYlib, an open source library for
large-scale inverse problems, adopting its framework for automating adjoint-based derivative
computation by leveraging the symbolic differentiation capabilities of UFL and algorithms for
efficient sampling of random fields. As a core functionality, SOUPy implements sample-based
evaluation of risk measures as well as their gradients and Hessians, where parallel-in-sample
computation is supported through MPI. The resulting cost functionals can then be minimized
using SOUPy’s implementations of large-scale optimization algorithms, such as L-BFGS (Liu
& Nocedal, 1989) and Inexact Newton-CG (Eisenstat & Walker, 1996; Steihaug, 1983), or
through algorithms available in SciPy (Virtanen et al., 2020) using the provided interface.

Thus, SOUPy allows researchers to rapidly prototype formulations for PDE-constrained OUU
problems. Additionally, SOUPy aims to facilitate the development and testing of novel algo-
rithms. For example, SOUPy has been used in the development of Taylor approximation-based
methods for the risk-averse optimization of turbulent flows (Chen et al., 2019), metamaterial
design (Chen et al., 2021), and photonic nanojets (Alghamdi et al., 2022), as well as ground-
water extraction (Chen & Ghattas, 2021) subject to chance constraints. It has also been used
to obtain baselines for the development of machine learning approaches for PDE-constrained
OUU (Luo et al., 2023).
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