
mathlib: A Scala package for readable, verifiable and
sustainable simulations of formal theory
Mark Blokpoel 1

1 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, The Netherlands
DOI: 10.21105/joss.06049

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @larkz
• @stephenfmann
• @drussellmrichie

Submitted: 24 August 2023
Published: 25 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Formal theory and computational modeling are critical in cognitive science and psychology.
Formal systems (e.g., set theory, functions, first-order logic, graph theory) allow scientists
to ‘conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined’
(Guest & Martin, 2021). They make otherwise underspecified theories precise and open
for critical reflection (van Rooij & Baggio, 2021). A theory can be formally specified in a
computational model using mathematical concepts such as set theory, graph theory, and
probability theory. The specification is often followed by analysis to understand precisely what
assumptions and consequences the formal theory entails. An important method of analysis is
computer simulation, which allows scientists to explore complex model behaviours and derive
predictions that otherwise cannot be analytically derived1.

mathlib is a library for Scala (Odersky, 2008) supporting functional programming that resembles
mathematical expressions such as set theory and graph theory. This library was developed to
complement the theory development method outlined in the open education book Theoretical
modeling for cognitive science and psychology by Blokpoel & van Rooij (2021). To date
mathlib is the only library that facilitates implementing computational-level simulations for
fully specified formal theories.

The goal of this library is to help users to implement simulations of their formal theories. Code
written in Scala using mathlib is:

• easy to read, because mathlib syntax closely resembles mathematical notation
• easy to verify, by proving that the code exactly implements the theoretical model (or

not)
• easy to sustain, as older versions of Scala and mathlib can easily be run on newer

machines

Statement of need
mathlib supports scholars in writing readable and verifiable code. Writing code is not easy,
writing code for which we can know that it computes what the specification (i.e., the formal
theory) states is even harder. Given the critical role of theory and computer simulations in
cognitive science, it is important that scholars can verify that the code does what the authors
intend it to do. This can be facilitated by having a programming language where the syntax
and semantics closely matches that of the specification. Since formal theories are specified
using mathematical notation (Blokpoel & van Rooij, 2021; Guest & Martin, 2021; Marr, 1982),
functional programming languages bring a lot to the table in terms of syntactic and semantic
resemblance to mathematical concepts and notation. mathlib adds mathematical concepts

1Computer simulations can also help scientists discover properties of the model that they would not have
thought to analytically derive, even when in principle the property can be analytically derived.

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

1

https://orcid.org/0000-0002-1522-0343
https://doi.org/10.21105/joss.06049
https://github.com/openjournals/joss-reviews/issues/6049
https://github.com/markblokpoel/mathlib
https://doi.org/10.5281/zenodo.12819230
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/larkz
https://github.com/stephenfmann
https://github.com/drussellmrichie
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06049


and notation to the functional programming language Scala (Odersky, 2008). At the time of
writing, the current version (0.9.1) supports set theory and graph theory. To appreciate the
readability of functional code, relative to the formal specification, consider the following two
code snippets. Both implement the same mathematical expression argmax𝑎∈𝐴 𝑓(𝑎), where
𝐴 is a set of strings and 𝑓(.) counts the length of each string. In both snippets the set 𝐴 is
translated to words to comply with default Scala style. A non-functional implementation could
look like this, where semantics (i.e., the meaning or function of the code) is more difficult to
analyze due to its use of mutable variables and a loop.

def f(a: String): Int = a.length

def expression(words: Set[String]): String = {

var maxLength: Int = 0

var longestWord: String = ""

for(word <- words) {

if(f(word) > maxLength) {

maxLength = f(word)

longestWord = word

}

}

longestWord

}

expression(Set("a", "aa"))

A functional implementation leveraging mathlib can look like this, which closely resembles the
mathematical expression in form and function.

def f(a: String): Int = a.length

def expression(words: Set[String]): String = {

argMax(words, f _)

.random.get

}

expression(Set("a", "aa"))

In the next section, we provide two concrete examples to illustrate how Scala and mathlib

make code more accessible to verify the relationship between simulation and theory.

mathlib and Scala support scholars in writing sustainable code. It is important that academic
contributions remain accessible for reflection and critique. This includes simulations that
also have theoretical import. Simulation results may need to be verified or future scholars
may wish to expand upon the work. It is not sufficient to archive code, because in practice
programming contributions in academia are easily lost because of incompatibility issues between
older software and newer operating systems. Scala (and consequently mathlib) runs on the
Java Virtual Machine (JVM) and has state-of-the-art versioning. The programmer can specify
exactly which version of Scala and mathlib needs to be retrieved to run the code on any
system that supports the JVM. Even when newer versions of Scala or mathlib may potentially
break older code, this versioning system allows future users to easily run, adapt or expand
older code.

mathlib is unique because its design encourages the computational cognitive scientist to write
readable, verifiable, and sustainable code for simulations of formal theories. This is not to
say that one cannot apply these principles in other languages, but it may require building the
mathematical infrastructure that mathlib supports. mathlib differs from other libraries in that
it focuses on usability and transparency for simulations of formal theories specifically, whereas
other libraries that implement similar functionality focus on computational expressiveness and

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

2

https://doi.org/10.21105/joss.06049


efficiency.

Illustrations
We present two illustrations to show the relationship between simulations implemented in Scala
and mathlib and formal theories.

Illustration 1: Subset choice
The following formal theory is taken from the textbook by Blokpoel & van Rooij (2021). It
specifies people’s capacity to select a subset of items, given the value of individual items and
pairs. For more details on this topic, see Chapter 4 of the textbook.

SUBSET CHOICE

Input: A set of items 𝐼, a value function for single items 𝑣 ∶ 𝐼 → ℤ and a binary value function
for pairs of items 𝑏 ∶ 𝐼 × 𝐼 → ℤ.

Output: A subset of items 𝐼′ ⊆ 𝐼 (or 𝐼′ ∈ 𝒫(𝐼)) that maximizes the combined value of the
selected items accordingly, i.e., argmax𝐼′∈𝒫(𝐼) ∑𝑖∈𝐼′ 𝑣(𝑖) +∑𝑖,𝑗∈𝐼′ 𝑏(𝑖, 𝑗).

Assuming familiarity with the formal theory, the mathlib implementation and Table 1 below
illustrate how to interpret and verify the code relative to the mathematical expressions
in the formal theory. In this code illustration, the following functionality is provided by
mathlib: sum(., .), argMax(., .) and powerset(.). A demo of this code can be found in
mathlib.demos.SubsetChoice.

type Item = String

def subsetChoice(

items: Set[Item],

v: Item => Double,

b: (Item, Item) => Double

): Set[Item] = {

def value(subset: Set[Item]): Double =

sum(subset, v) + sum(subset.uniquePairs, b)

val allOptimalSolutions = argMax(powerset(items), value)

allOptimalSolutions.random.get

}

Table 1: Mappings between formal expression and mathlib implementation.

Formal expression mathlib implementation and description
n.a. Item

Custom type for items.
𝐼 items: Set[Item]

A set of items.
𝑣 ∶ 𝐼 → ℤ v: (Item => Double)

Value function for single items.
𝑏 ∶ 𝐼 × 𝐼 → ℤ b: ((Item, Item) => Double)

Value function for pairs of items.
n.a. def value(subset: Set[Item]): Double

Function wrapper for the combined value of a subset.
∑𝑖∈𝐼′ 𝑣(𝑖) sum(subset, v)

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

3

https://doi.org/10.21105/joss.06049


Formal expression mathlib implementation and description
Sum of single item values, where subset is 𝐼′.

∑𝑖,𝑗∈𝐼′ 𝑏(𝑖, 𝑗) sum(subset.uniquePairs, b)

Sum of pair-wise item values, where uniquePairs generates all pairs
(x, y) in subset with x!=y.

argmax𝐼′∈𝒫(𝐼) … argMax(powerset(items), value)

Returns the element from the powerset of items that maximizes
value.

Illustration 2: Coherence
Coherence theory (Thagard & Verbeurgt, 1998) aims to explain people’s capacity to infer
a consistent set of beliefs given constraints between them. For example, the belief ‘it rains’
may have a negative constraint with ‘wearing shorts’. To believe that it rains and not wearing
shorts is consistent, but to believe that it rains and to wear shorts is inconsistent. In case of
consistency, the constraint is said to be satisfied. Coherence theory conjectures that people infer
truth-values for their beliefs so as to maximize the sum of weights of all satisfied constraints.
For a more detailed introduction to Coherence theory, see (Thagard & Verbeurgt, 1998) and
Chapter 5 in (Blokpoel & van Rooij, 2021)

COHERENCE

Input: A graph 𝐺 = (𝑉 ,𝐸) with vertex set 𝑉 and edge set 𝐸 ⊆ 𝑉 × 𝑉 that partitions into
positive constraints 𝐶+ and negative constraints 𝐶− (i.e., 𝐶+ ∪ 𝐶− = 𝐸 and 𝐶+ ∩ 𝐶− = ∅)
and a weight function 𝑤 ∶ 𝐸 → ℝ.

Output: A truth value assignment 𝑇 ∶ 𝑉 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} such that 𝐶𝑜ℎ(𝑇 ) = 𝐶𝑜ℎ+(𝑇 ) +
𝐶𝑜ℎ−(𝑇 ) is maximum. Here,

𝐶𝑜ℎ+(𝑇 ) = ∑
(𝑢,𝑣)∈𝐶+

{𝑤((𝑢, 𝑣)) if 𝑇 (𝑢) = 𝑇(𝑣)
0 otherwise

and

𝐶𝑜ℎ−(𝑇 ) = ∑
(𝑢,𝑣)∈𝐶−

{𝑤((𝑢, 𝑣)) if 𝑇 (𝑢) ≠ 𝑇(𝑣)
0 otherwise

Assuming familiarity with the formal theory, the mathlib implementation and Table 2 below
illustrate how to interpret and verify the code relative to the mathematical expressions in the
formal theory. In this code illustration, the following functionality is provided by mathlib:
WUnDiGraph, WUnDiEdge, Node, sum(., .) and allMappings(.). A demo of this code can be
found in mathlib.demos.Coherence.

def coherence(

network: WUnDiGraph[String],

positiveConstraints: Set[WUnDiEdge[Node[String]]]

): Map[Node[String], Boolean] = {

val negativeConstraints: Set[WUnDiEdge[Node[String]]] =

network.edges \ positiveConstraints

def cohPlus(assignment: Map[Node[String], Boolean]): Double = {

def isSatisfied(pc: WUnDiEdge[Node[String]]): Double =

if (assignment(pc.left) == assignment(pc.right)) pc.weight

else 0.0

sum(positiveConstraints, isSatisfied _)

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

4

https://doi.org/10.21105/joss.06049


}

def cohMinus(assignment: Map[Node[String], Boolean]): Double = {

def isSatisfied(pc: WUnDiEdge[Node[String]]): Double =

if (assignment(pc.left) != assignment(pc.right)) pc.weight

else 0.0

sum(negativeConstraints, isSatisfied _)

}

def coh(assignment: Map[Node[String], Boolean]): Double =

cohPlus(assignment) + cohMinus(assignment)

val allPossibleTruthValueAssignments =

network.vertices.allMappings(Set(true, false))

val optimalSolutions =

argMax(allPossibleTruthValueAssignments, coh)

optimalSolutions.random.get

}

Table 2: Mappings between formal expression and mathlib implementation.

Formal expression mathlib implementation and description
𝐺 network: WUnDiGraph[String]

Undirected weighted graph with labels.
𝐶+ positiveConstraints: Set[WUnDiEdge[Node[String]]]

Set of positive constraints as weighted edges.
𝐶− negativeConstraints: Set[WUnDiEdge[Node[String]]]

Set of negative constraints, computed by subtracting the positive
constraints from all edges in network.

𝑤 Weights are represented not by an explicit function, but by a weighted
graph.

𝑇 ∶ 𝑉 →
{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

allPossibleTruthValueAssignments

The truth value assignments are explicitly listed by generating all
mappings between vertices and Set(true, false).

𝐶𝑜ℎ+(𝑇 ) cohPlus(assignment: Map[Node[String], Boolean]): Double

Returns the sum of weights of all satisfied positive constraints.
𝐶𝑜ℎ−(𝑇 ) cohMinus(assignment: Map[Node[String], Boolean]): Double

Returns the sum of weights of all satisfied negative constraints.
𝐶𝑜ℎ(𝑇 ) coh(assignment: Map[Node[String], Boolean]): Double

Returns the sum of weights of all satisfied constraints.
n.a. optimalSolutions

Compute all truth value assignments with maximum coherence.
n.a. optimalSolutions.random.get

The formal specification is met when any maximum truth value
assignment is returned, so we return a random maximum one.

Resources
• Github repository: https://github.com/markblokpoel/mathlib
• Website: https://markblokpoel.github.io/mathlib
• Scaladoc: https://markblokpoel.github.io/mathlib/scaladoc

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

5

https://github.com/markblokpoel/mathlib
https://markblokpoel.github.io/mathlib
https://markblokpoel.github.io/mathlib/scaladoc
https://doi.org/10.21105/joss.06049


Acknowledgements
We thank the Computational Cognitive Science group at the Donders Center for Cognition
(Nijmegen, The Netherlands) for useful discussions and feedback, in particular, Laura van de
Braak, Olivia Guest, and Iris van Rooij. We also thank the reviewers Larkin Liu, Russel Richie,
and Stephen Mann and the editor Daniel Katz for their useful feedback which has greatly
improved this paper.

This project was supported by Netherlands Organization for Scientific Research Gravitation
Grant of the Language in Interaction consortium 024.001.006, the Radboud School for Artificial
Intelligence, and the Donders Institute, Donders Center for Cognition.

References
Blokpoel, M., & van Rooij, I. (2021). Theoretical modeling for cognitive science and psychology.

https://computationalcognitivescience.github.io/lovelace/

Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in
psychological science. Perspectives on Psychological Science, 16. https://doi.org/10.1177/
1745691620970585

Marr, D. (1982). Vision: A computational investigation into the human representation and
processing of visual information. W.H. Freeman, San Francisco, CA. https://doi.org/10.
7551/mitpress/9780262514620.001.0001

Odersky, M. (2008). Programming in Scala. Mountain View, California: Artima.

Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science,
22(1), 24. https://doi.org/10.1207/s15516709cog2201_1

van Rooij, I., & Baggio, G. (2021). Theory before the test: How to build high-verisimilitude
explanatory theories in psychological science. Perspectives on Psychological Science, 16.
https://doi.org/10.1177/1745691620970604

Blokpoel. (2024). mathlib: A Scala package for readable, verifiable and sustainable simulations of formal theory. Journal of Open Source Software,
9(99), 6049. https://doi.org/10.21105/joss.06049.

6

https://computationalcognitivescience.github.io/lovelace/
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1177/1745691620970585
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.1207/s15516709cog2201_1
https://doi.org/10.1177/1745691620970604
https://doi.org/10.21105/joss.06049

	Summary
	Statement of need
	Illustrations
	Illustration 1: Subset choice
	Illustration 2: Coherence

	Resources
	Acknowledgements
	References

