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Abstract
The mcglm library, a newly introduced Python tool, facilitates statistical analyses using Multi-
variate Covariance Generalized Linear Models (McGLM). This contemporary family of models
universalizes the traditional Generalized Linear Models (GLM), empowering them to handle
multivariate and non-independent response variables. Due to its flexibility and explicit specifi-
cation, McGLM supports a lot of statistical analyses across different kinds of data and distinct
traits; in this article, we promote mcglm.

The mcglm library provides a comprehensive platform for data analysis using the McGLM
framework. Built upon the established standards of the statsmodels library, it provides a
comprehensive summary report for fitting assessment, including elementary parameters such as
regression and dispersion coefficients, confidence intervals, hypothesis testing results, residual
analysis, goodness-of-fit measurements, and correlation coefficients between outcomes. In
addition, the library provides a rich set of link and variance functions and tools to define
inner-response dependency matrices through the matrix linear predictor. The base code is
extendable and reliable, reflecting sound object-oriented programming practices and thorough
unit testing.

The library is hosted on PyPI and can be installed with some Python library manager, such as
pip.

Introduction
Dated at the beginning of the 19th century and controversial about the actual authorship,
the least squares method established an optimization algorithm (Stigler, 1981). According to
the Gauss-Markov theorem (Hallin, 2014), the resulting estimates are optimal and unbiased
under linear conditions. This optimization method forms the basis of linear regression, one of
the earliest statistical models (Galton, 1886; Narula & Wellington., 1982). Linear regression
associates a response variable to a group of covariates by employing a linear operation on
regression coefficients (Seal, 1967). Three main assumptions for linear regression are linearity,
independent realizations of the response variable, and a Gaussian homoscedastic error with
a zero mean. While standing the test of time, linear regression has motivated numerous
statistical proposals seeking to generalize its foundational assumptions.

Over time, many statistical proposals have aimed to extend the linear regression. Nelder
& Wedderburn (1972) proposed the Generalized Linear Model (GLM), which relieves the
Gaussian assumption accommodating exponential family models (Müller, 2004). Similarly, the
Generalized Additive Model (GAM) (Hastie & Tibshirani, 1986) eases the linear assumption
by using covariates smooth functions. The Generalized Estimating Equations (GEE) (Liang
& Zeger, 1986) apply the quasi-likelihood estimating functions to deal with dependent data.
Additional consolidated frameworks for dependent data include Copulas (Krupskii & Joe, 2013;
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Masarotto & Varin, 2012), and Mixed Models (Verbeke et al., 2014), among others. One
prevalent aspect of the cited frameworks is that they cannot deal with multiple response
variables.

The Multivariate Covariance Generalized Linear Model (McGLM) (Wagner H. Bonat &
Jørgensen, 2016) extends the GLM by allowing the multivariate analysis of non-independent
responses, including longitudinal and spatial data. The model is defined through second-
moment assumptions, utilizing five essential components: the linear predictor via design matrix,
link function, variance function, covariance link function, and the matrix linear predictor.
As a comprehensive statistical model, McGLM facilitates analysis by assessing regression
and dispersion coefficients, hypothesis tests, goodness-of-fit measurements, and correlation
coefficients between response variables. To the best of our knowledge, the library mcglm is the
first holistic framework to support statistical analysis in Python with the aid of McGLM.

Statement of need
The McGLM framework is available for R users through the open-source package mcglm (W. H.
Bonat, 2016); nevertheless, the language Python did not have a standard library until the library
mcglm. The foremost library for statistical analysis in Python is the statsmodels (Seabold &
Perktold, 2010). It implements classical statistical models, such as GLM, GAM, GEE, and
Copulas. Many other libraries stand out for probabilistic programming in Python (Meent et
al., 2018), such as: PyMC (Salvatier et al., 2016), Pyro (Bingham et al., 2018), and PyStan

(Carpenter et al., 2017). Those libraries distinguish from statsmodels on their Bayesian
paradigm of specifying models. The library mcglm specifies the McGLM in a frequentist fashion.

The library mcglm provides an easy interface for fitting McGLM on the standards of the
statsmodels (Seabold & Perktold, 2010) library. It provides a comprehensive framework for
statistical analysis supported by McGLM, with tools to lead its model specification, fitting,
and appropriate report to assess estimates.

Model Components
McGLM is specified by five components: linear predictors, link functions, variance functions,
matrix linear predictors, and covariance link functions. In this section, we discuss the usual
choice for each of these components.

McGLM offers the flexibility to specify typical linear predictors, including the usual formula
notation popular in many statistical software. In alignment with the GLM framework, the link
function encompasses usual choices like logit and probit for binary and binomial data, log for
count data, and identity for continuous accurate data. The variance function is fundamental to
the McGLM, as it is related to the marginal distribution of the response variable. Noteworthy
among common choices is the power of the variance function, which is specialized for handling
continuous data and defines the Tweedie family of distributions, as elucidated by Jørgensen
(1987) and Jørgensen (1997). This family includes exceptional cases such as Gaussian (p = 0),
Gamma (p = 2), and Inverse Gaussian (p = 3). The variance function extended binomial is a
common choice for analyzing bounded data. For fitting count data, the dispersion function
presented by Jørgensen & Kokonendji (2015), called Poisson-Tweedie, is flexible enough to
capture notable models, such as Hermite (p = 0), Neyman Type A (p = 1), Negative Binomial
(p = 2) and Poisson inverse Gaussian (p = 3). The following table summarizes the mentioned
variance functions:

The user specifies the dependency through the Z matrices in the matrix linear predictor to
describe the covariance structure. Many of the classical statistical models are replicable by
setting tailored Z matrices. To cite a few, mixed models, moving averages, and compound
symmetry. For more details, see Wagner H. Bonat & Jørgensen (2016) and W. Bonat (2018).
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Function name Formula
Tweedie/Power V(.; 𝑝) = 𝜇𝑝

Binomial V(.; 𝑝) = 𝜇𝑝(1 − 𝜇)𝑝
Poisson-Tweedie V(.; 𝑝) = 𝜇 + 𝜇𝑝

Table 1: Table with variance functions implemented

Finally, W. Bonat (2018) proposed three covariance link functions: identity, inverse, and
exponential-matrix.

The Python library mcglm

Figure 1: UML for the library

The library mcglm provides the first Python tool for statistical analysis with the aid of McGLM.
Heavily influenced by its twin R version (W. Bonat, 2018), the library has ninety-one percent
of unit-testing coverage. URLs of source-code and PyPI, the official repository for Python
libraries, are https://github.com/jeancmaia/mcglm and https://pypi.org/project/mcglm. The
library mcglm can easily be installed using the library pip.

The mcglm library is based on popular libraries of scientific Python programming: NumPy (Harris,
2020) and SciPy (Virtanen, 2020). We inherit statsmodels’s interface and deliver a code
library akin to their standards API. Object-oriented programming is another cornerstone for
the library mcglm; the SOLID principles (Rana & Khonica, 2021) helped to create a readable
and extensible code base. The UML diagram Figure 1 presents the mcglm library architecture.

The implementation mcglm lies in six classes: MCGLM, MCGLMMean, MCGLMVariance,
MCGLMCAttributes, MCGLMParameters and MCGLMResults. Each class has its scope and re-
sponsibilities. For in-depth details, access our documentation at https://mcglm.readthedocs.io.

We adopted the statsmodels standards of attribute names; the endog argument is a vector,
or a matrix, with the realizations of the response variable; the exog statement defines the
covariates through design matrices. For multiple outcomes, endog and exog must be specified
via Python lists. The z argument establishes dependency arrays through numpy array structures.

Arguments link and variance set the link and variance functions, respectively. For the former,
the available options are Identity, Logit, Power, Log, Probit, Cauchy, Cloglog, Log-log,
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NegativeBinomial, and Inverse Power - all canonical options for GLM. Suitable options for the
variance are Constant, Tweedie, BinomialP, BinomialPQ, Geometric-Tweedie, and Poisson-
Tweedie. The default values for the link and variance functions are identity and constant,
suitable picks for Gaussian models. For multiple outcomes, link and variance must be specified
via Python lists.

The offset argument is suitable for either continuous or count outcomes. In addition, parameter
ntrial is the canonical number of trials for binomial data. Finally, parameter power_fixed
activates searching for the power parameter for Tweedie models. For multiple outcomes,
parameters must be specified via Python lists.

An instantiated object can fit a model with the fit() method, which returns an object of the
MCGLMResults class. This object can trigger two methods: summary(), a comprehensive report
of estimates on the statsmodels fashion, and anova(), to an ANOVA test for categorical
covariates. Some other attributes may be helpful, such as mu, which returns a vector
with expected values; pearson_residuals for the Pearson normalized residuals; aic, bic, and
loglikelihood for model comparison.

Moreover, library mcglm provides methods to assist in specifying the matrix linear predictor
through dependence matrices Z. There are three available methods: mc_id(), which crafts a
matrix for independent realizations of outcome; mc_mixed(), which builds matrices for mixed
models, and mc_ma() that build matrices for moving average fitting, popular models in time
series analysis. The package mcglm of R language implements similar methods to aid in the
matrix linear predictor specification. For in-depth details about those matrices, see Wagner H.
Bonat & Jørgensen (2016).
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