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Summary
The electronic structure problem is one of the main problems in modern theoretical chemistry.
While there are many already-established methods both for the problem itself and its applica-
tions like semi-classical or quantum dynamics, it remains a computationally demanding task,
effectively limiting the size of solved problems. Fortunately, it seems, that offloading some
parts of the computation to Quantum Processing Units (QPUs) may offer significant speed-up,
often referred to as quantum supremacy or quantum advantage. Together with the potential
advantage, this approach simultaneously presents several problems, most notably naturally
occurring quantum decoherence, hereafter denoted as quantum noise and lack of large-scale
quantum computers, making it necessary to focus on Noisy-Intermediate Scale Quantum com-
puters when developing algorithms aspiring to near-term applications. SA-OO-VQE package
aims to answer both these problems with its hybrid quantum-classical conception based on
a typical Variational Quantum Eigensolver approach, as only a part of the algorithm utilizes
offload to QPUs and the rest is performed on a classical computer, thus partially avoiding
both quantum noise and the lack of quantum bits (qubits). The SA-OO-VQE has the ability
to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known
numerical optimization problems arising in state-specific approaches around avoided crossings
or conical intersections.

Statement of need
Recently, quantum chemistry is one of the main areas-of-interest in Quantum Computing
(QC)(Bauer et al., 2020; McArdle et al., 2020; Reiher et al., 2017). That said, in many
real-life applications, it is necessary to treat both the ground and excited states accurately and
on an equal footing. The problem is magnified when the Born-Oppenheimer approximation
breaks down due to a strong coupling among degenerate or quasi-degenerate states, most
notably the ground and the first excited state, for which the accurate description requires
(computationally demanding) multi-configurational approaches. A good example of such a
case is a photoisomerization mechanism of the rhodopsin chromophore, which progresses from
the initial photoexcitation of the cis isomer over the relaxation in the first excited state towards
a conical intersection, where the population is transferred back to the ground state of the
trans isomer. To describe such a process thoroughly, one must compute not only relevant
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potential energy surfaces (PESs), but also their gradients w.r.t. nuclear displacements, utilized
further in molecular dynamics simulations. Finally, a description of the conical intersection can
be done by obtaining non-adiabatic couplings (NACs).

Formally, the approaches describing PES topology, topography, and non-adiabatic couplings
require Hamiltonian diagonalization, which represents the most significant bottleneck. Consider-
ing classical methods like State-Averaged Multi-Configurational Self-Consistent Field(Helgaker
et al., 2013), only small complete active spaces have to be used for the large computational
overhead inherently present. However, such an approximation brings missing dynamical correla-
tion treatment, inducing the need to recover it ex-post, usually via some of the quasi-degenerate
perturbation techniques(Granovsky, 2011; Park, 2019). On the other hand, QC brings the pos-
sibility of large complete active spaces back, thus retaining a substantial part of the dynamical
correlation. Moreover, the dynamical correlation can be also retrieved a posteriori utilizing
QPUs only at the expense of more measurements, with no additional demands on hardware
infrastructure(Takeshita et al., 2020).

State-Averaged Orbital-Optimization Variational Quantum Eigensolver (SA-OO-VQE) method
addresses the above-mentioned problems and provides a way to compute both PES gradients
and NACs analytically(Omiya et al., 2022; Yalouz et al., 2021, 2022). Authored by Yalouz et
al., there is an exemplary implementation focusing on the pedagogical aspect and relying on
matrix-vector multiplications rather than actual measurements, avoiding the utilization of real
QC infrastructure. Our implementation differs in a way that it aims to be a production-ready
solver utilizing both QCs and classical computing infrastructure efficiently, being able to run
with different backgrounds, utilizing the Qiskit toolbox interface. The whole code is written in
Python3, with YAML scripts enabling its fast installation and usage.

The results are illustrated on the molecule of formaldimine, which can be seen in Figure 1.
Their comparison with the ones obtained via Molcas(Li Manni et al., 2023) implementation
of Complete Active-Space Self-Consistent Field(Malmqvist & Roos, 1989) are shown in
Figure 2,Figure 3 and Figure 4. All the computations were computed with 3 active orbitals
containing 4 electrons and with STO-3G basis set.
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Figure 1: Molecule of formaldimine being described with bending and dihedral angles denoted 𝛼 and 𝜙,
respectively.

Figure 2: Comparison of potential energy depending on bending angle 𝛼 in formaldimine molecule with
dihedral angle 𝜙 = 90∘.
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Figure 3: Comparison of ground-state gradients with bending angle 𝛼 = 130∘ and dihedral angle 𝜙 = 90∘
in formaldimine molecule.

Figure 4: Comparison of total non-adiabatic couplings on bending angle 𝛼 = 130∘ and dihedral angle
𝜙 = 90∘ in formaldimine molecule.

Features
With SA-OO-VQE you can obtain the following quantities:

• Potential energy surfaces
• Circuit (or Ansatz) gradients
• Orbital gradients
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• Gradients of potential energy surfaces
• Non-adiabatic couplings

Also, for numerical optimization, you can use any of the optimizers supported by Qiskit1 and
our own implementation of

• Particle Swarm Optimization

Getting Started
The package is prepared with a priority of being very simple to use and the concise documenta-
tion can be found at sa-oo-vqe-qiskit.rtfd.io. To simplify the installation part, we recommend
utilizing the Conda management system2 together with the prepared environment.yml file.

At first, users should clone the repository.

git clone git@gitlab.com:MartinBeseda/sa-oo-vqe-qiskit.git

And install all the dependencies.

$ cd sa-oo-vqe-qiskit

$ conda env create -f environment.yml

$ conda activate saoovqe-env

$ python3 -m pip install .

These commands run in a terminal that will download and install all the necessary packages.
The package availability can be tested afterward simply by importing the package and looking
at its version.

$ python3

>>> import saoovqe

>>> saoovqe.__version__

Finally, usage examples are located both in the examples folder and in the documentation.
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