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Summary
Boundary integral methods are a popular approach to solving potential problems, in particular
for the Laplace and Helmholtz problems in such areas as fluid dynamics, acoustics, and
electromagnetism. They are a natural choice for the solution of problems in unbounded
domains, such as wave scattering, where the radiation boundary condition is automatically
satisfied by the nature of the formulation. The Nystrom method is one approach to the solution
of boundary integral problems, which lends itself to acceleration using the Fast Multipole
Method (FMM). NBI is a library for the solution of boundary integral problems based on
the approach of Greengard et al. (2021) and the FMM methods of Gumerov & Duraiswami
(Gumerov & Duraiswami, 2003, 2004, 2005, 2009). The code includes a number of executables
which can be used to set up and solve problems on realistic geometries, with a number of
examples provided for testing of the solver. Results can be visualized using GMSH (Geuzaine
& Remacle, 2009), a standard free meshing program.

Statement of need
A number of free boundary integral codes exist that can be used for problems of the type
handled by NBI (Betcke & Scroggs, 2021, for example; Kirkup, 2007), with different approaches
to discretization and solution, ranging from collocation methods with direct solvers, suitable
for relatively small problems, to FMM-accelerated Galerkin techniques with iterative solvers,
which can be used on large complex geometries. NBI implements recent work on high-order
solution of boundary integral problems (Greengard et al., 2021) in a form that can be used
for a range of engineering applications. The principal motivation is the solution of potential
problems in acoustics and aerodynamics. As well as the library proper, there are codes for
discretization of general geometries supplied in a number of formats; matrix assembly and
problem solution; field evaluation; and post-processing and visualization of results. A built-in
parser gives a flexible and intuitive means of evaluating boundary conditions, which are supplied
as analytical expressions parsed and evaluated on the surface. This allows boundary conditions
to be specified in a form that makes it easier to perform parametric studies by systematically
modifying internal variables.

Simple geometries, such as spheres and ellipsoids, are implemented as internal functions. More
general shapes can be produced using standard GMSH inputs (Geuzaine & Remacle, 2009) or
the CST method of Kulfan (2010), which is implemented in an extended and more general
form in the AGG library that is included with the NBI distribution. This allows the parametric
specification of forms that arise in aerodynamic applications, in a manner that is convenient
for optimisation and parametric studies.
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Mathematics
The Laplace and Helmholtz potentials generated by a surface source distribution are given by
a boundary integral

𝜙(x) = ∫
𝑆
𝜙(y) 𝜕

𝜕𝑛
𝐺(x,y) − 𝜕𝜙(y)

𝜕𝑛
𝐺(x,y)d𝑆(y), (1)

where 𝐺(x,y) is the Green’s function for the problem. For points lying on the surface, the left
hand side is replaced by 𝜙/2 and the equation is interpreted as a boundary integral equation
to be solved subject to an appropriate boundary condition. By default, NBI implements a
Neumann (surface normal derivative) boundary condition as that most appropriate to acoustic
scattering and to potential problems in fluid dynamics.

Features
Details of the problem setup and solution procedure are given in the code documentation, but
the basic steps are:

• generation of a surface discretization;
• assembly of the system matrices;
• solution of the problem subject to a specified boundary condition; and
• postprocessing, including evaluation of the potential field, and visualization.

Each of these steps is carried out using an appropriate executable, and a full problem can be
solved using a Unix or Linux shell script that runs each step in turn.

The intention has been to develop an implementation of the main elements of Greengard et al.
(2021) in a code that is relatively easy to use in applications. The principal differences that a
user will note between NBI and the reference implementation of the method of Greengard et al.
(2021) are: the range of geometry formats supported, including the widely used GMSH standard,
and an extension of Kulfan’s CST method for “aerodynamic’’ shapes (Kulfan, 2010); the use
of the standard PETSc iterative solvers, with the option to select a solver at runtime; and the
ability to define boundary conditions using a built-in parser for mathematical expressions, or
pre-defined functions for the sources that arise in realistic problems, such as scattering of rotor
noise.

Surface generation and representation
Surfaces in NBI are represented as high-order triangular patches, interpolated using Koorn-
windwer orthogonal polynomials (Greengard et al., 2021). A number of surface generation
methods are provided (built-in basic geometries, parametric surfaces, GMSH geo files) allowing
considerable flexibility in the workflow for real problems.

Quadrature rules
Two main types of quadrature rule are used in NBI. Surface points are generated on each patch
at the nodes of high order rules for triangles (Wandzura & Xiao, 2003; Xiao & Gimbutas, 2010).
These nodes are used, via the FMM, to evaluate the far-field interactions in the boundary
integrals. Near-field interactions are computed by subtracting the terms generated by the
surface sources and adding terms evaluated using adaptive quadrature and specialized rules for
quadrature on triangles, pre-computed using methods for generalized Gaussian rules (Bremer
& Gimbutas, 2013). These are hard-coded into the library and selected automatically during
matrix assembly.
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Solving problems
Problems in NBI are solved using iterative solvers with matrix-free evaluation of integrals. The
evaluation uses a Fast Multipole Method (Gumerov & Duraiswami, 2003, 2004, 2005, 2009).
A GMRES solver is built in and there is an optional interface to the PETSc library and its
solvers (Balay et al., 2023). Boundary conditions in NBI are specified using analytical formulae
that are parsed and evaluated at each surface node. This allows an intuitive definition of
boundary conditions, where user-defined variables simplify parametric variation, and a range of
built-in functions for the most common boundary conditions are also available. These include
point sources for the Laplace and Helmholtz problems, and ring sources for the simulation of
rotor acoustics in aeronautics.

Postprocessing and visualization

Figure 1: GMSH visualisation of output from sphere scattering example.

Figure 1 shows the GMSH visualisation of the scattered field from a sphere subject to plane
wave excitation, one of the test cases included in the package.

Figure 2: GMSH visualisation of output from rotor noise example.

Figure 2 shows the GMSH visualisation of the field scattered from an ellipsoid, subject to an
incident field from a ring source, a simple model for scattering of rotor noise by a nacelle. In
this case, the boundary condition is defined using a built-in function in NBI, demonstrating its
application to realistic problems with complex boundary conditions.
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