
omni-fig: Unleashing Project Configuration and
Organization in Python
Felix Leeb 1¶

1 Max Planck Institute for Intelligent Systems, Tübingen, Germany ¶ Corresponding author
DOI: 10.21105/joss.05350

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @julianpistorius
• @jarrah42

Submitted: 25 January 2023
Published: 04 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Abstract
We present a lightweight package to take care of the configuration and organization of all
your Python projects. Although omni-fig is well suited for projects of virtually any size or
complexity, it is specifically designed for research projects where a small development team
doesn’t want to waste time on boilerplate code or a bespoke user interface. Nevertheless, the
intuitive project structure encourages developers to good design practices making it easier for
collaborators and prospective users to rapidly find and understand the core contributions they
need. The feature-rich configuration system completely abstracts the implementation from the
specification of parameters, so the developer can focus entirely on creating new functionality,
while the user can quickly and precisely specify the desired functionality by composing modular
config files, through the command line interface, or even in an interactive environment like
Jupyter. omni-fig transforms the project organization and configuration from a bothersome
distraction into a joy, thereby improving clarity while also accelerating development.

Introduction
One particularly promising trend in computational research, especially in machine learning, is
that releasing the code associated with projects is becoming increasingly common (Pineau
et al., 2021). Not only is this crucial for reproducibility (Guyon, n.d.), but this also fosters
interdisciplinary research and progress in industry (Aho et al., 2020).

However, the needs of developers differ significantly from those of potential users. Developers
(and especially researchers) prefer flexible, open-ended tools tailored for extensibility to prototype
and synthesize novel methods. Meanwhile, users prefer tools that automate details and provide
a simple interface that is digestible and directly applicable to some downstream problem.
Even fellow researchers exploring new methods want to quickly understand the essence of
the contribution rather than getting bogged down in some idiosyncrasies of a project. For
example, in machine learning, this has given rise to a variety of development practices (Ebert
et al., 2016; Treveil et al., 2020) and AutoML packages (He et al., 2021) to make cutting edge
methods more highly accessible for a variety of real-world applications. However, the opaque
rigid interfaces and product-oriented focus cater more to the end-user, thereby increasing
friction in design and synthesis for developers.

Statement of Need
Project organization and configuration is an important albeit unglamorous part of every project.
Neglecting this aspect can significantly impede prototyping and development as well as making
the project less understandable and useable for any potential user or collaborator. Consequently,
quite a few packages already exist to help with this task.

Leeb. (2024). omni-fig: Unleashing Project Configuration and Organization in Python. Journal of Open Source Software, 9(98), 5350.
https://doi.org/10.21105/joss.05350.

1

https://orcid.org/0000-0002-3127-5707
https://doi.org/10.21105/joss.05350
https://github.com/openjournals/joss-reviews/issues/5350
https://github.com/felixludos/omni-fig
https://doi.org/10.5281/zenodo.11424101
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/julianpistorius
https://github.com/jarrah42
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05350


Perhaps the most similar to our proposed omni-fig is hydra (Yadan, 2019), which is a popular
configuration framework that provides a feature-rich user interface, even including composing
config files to some extent. However, from the developer’s perspective, the project structure
of hydra is more constrained and the configuration system is built on top of OmegaConf

(OmegaConf - Flexible Python Configuration System, 2012), making more advanced features
such as automatic instantiation of objects nonexistent or more cumbersome. Packages such as
OmegaConf or pydantic (Colvin, 2019), on the other hand, focus more on integrations and
performance but lack high-level features and a user-friendly interface. Slightly less comparable
are a variety of packages designed for more specific applications with fixed project structures,
such as dynaconf (Rocha, 2018), gin-config (Holtmann-Rice et al., 2018), and confr (Arro,
2022). Finally, there are some built-in libraries that are commonly used for the command-line
interface and configuration, such as argparse (Argparse - Parser for Command-Line Options,
Arguments and Sub-Commands, n.d.) and configparser (Configparser - Configuration File
Parser, n.d.). However, these provide minimal features and scale poorly to more complex,
evolving projects.

All too often, the trade-off between power and simplicity results in software (particularly
research projects) containing cutting-edge features barely perceptible behind a limited or even
nonexistent user interface. Here, a good project configuration framework can bridge the gap
between developers and users. The user wants to select functionality in a concise and intuitive
way while still allowing fine-grained control when needed. Meanwhile, the developer first
and foremost wants the configuration system to seamlessly provide the necessary parameters
without interfering with the broader design and implementation of the functionality.

Summary
Here omni-fig strikes a favorable balance in that it was designed from the ground up to cater
specifically to the needs of both the developer and the user.

The primary way the developer interacts with omni-fig is by registering any functionality as
a script (for functions), component (for classes), or modifier (for mixins), creating config
files as needed, and then accessing config parameters using the config object at runtime.
Once registered, the objects can be accessed anywhere in the project through the config
object, thereby incentivizing the developer to register any functionality that can be customized
by configuration. Meanwhile, since config files can easily be composed, the developer is
incentivized to separate configuration in a modular way. Finally, at runtime, the developer
doesn’t have to worry about how the config parameters are specified (e.g., as a command
line argument or in a config file), but can simply access them through the config object. This
abstraction allows arbitrarily complex objects, even including mix-ins added dynamically at
runtime (see modifier), to be instantiated automatically.

From the user’s perspective, the modular config files and explicit registration of top-level
functionality greatly improve the transparency of the project. For example, just running fig

-h returns a custom help message displaying all registered scripts in the project. Then the
high-level modularity of the config files allows the developer to effortlessly create demos by
composing existing config files to showcase the key features of the project.

For more information, check out the documentation which includes an overview of the key
features with examples. We are also continuously working on new features such as adding
integrations and improving error messages. In any case, contributions and feedback are always
very welcome!

Leeb. (2024). omni-fig: Unleashing Project Configuration and Organization in Python. Journal of Open Source Software, 9(98), 5350.
https://doi.org/10.21105/joss.05350.

2

https://omnifig.readthedocs.io/en/latest/
https://omnifig.readthedocs.io/en/latest/highlights.html
https://doi.org/10.21105/joss.05350


Acknowledgments
This work was supported by the German Federal Ministry of Education and Research (BMBF):
Tübingen AI Center, FKZ: 01IS18039B, and by the Machine Learning Cluster of Excellence,
EXC number 2064/1 – Project number 390727645. The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Felix Leeb. The
authors would also like to thank Vincent Berenz for his feedback and suggestions, and Amanda
Leeb for designing the omni-fig logo.

References
Aho, T., Sievi-Korte, O., Kilamo, T., Yaman, S., & Mikkonen, T. (2020). Demystifying data

science projects: A look on the people and process of data science today. International
Conference on Product-Focused Software Process Improvement, 153–167. https://doi.org/
10.1007/978-3-030-64148-1_10

Argparse - parser for command-line options, arguments and sub-commands. (n.d.). https:
//docs.python.org/3/library/argparse.html

Arro, M. (2022). Confr–a configuration system for machine learning projects.

Colvin, S. (2019). Pydantic - data parsing and validation using Python type hints. Github.
https://github.com/pydantic/pydantic

Configparser - configuration file parser. (n.d.). https://docs.python.org/3/library/configparser.
html

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE Software, 33(3),
94–100.

Guyon, I. (n.d.). Artificial intelligence for all.

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-
Based Systems, 212, 106622. https://doi.org/10.1016/j.knosys.2020.106622

Holtmann-Rice, D., Guadarrama, S., & Silberman, N. (2018). Gin config - provides a lightweight
configuration framework for Python. Github. https://github.com/google/gin-config

OmegaConf - flexible Python configuration system. (2012). Github. https://github.com/
omry/omegaconf

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E., & Larochelle, H. (2021). Improving reproducibility in machine learning research:
A report from the NeurIPS 2019 reproducibility program. Journal of Machine Learning
Research, 22.

Rocha, B. (2018). Dynaconf - configuration management for Python. Github. https:
//github.com/dynaconf/dynaconf

Treveil, M., Omont, N., Stenac, C., Lefevre, K., Phan, D., Zentici, J., Lavoillotte, A., Miyazaki,
M., & Heidmann, L. (2020). Introducing MLOps. O’Reilly Media.

Yadan, O. (2019). Hydra - a framework for elegantly configuring complex applications. Github.
https://github.com/facebookresearch/hydra

Leeb. (2024). omni-fig: Unleashing Project Configuration and Organization in Python. Journal of Open Source Software, 9(98), 5350.
https://doi.org/10.21105/joss.05350.

3

https://doi.org/10.1007/978-3-030-64148-1_10
https://doi.org/10.1007/978-3-030-64148-1_10
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://github.com/pydantic/pydantic
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html
https://doi.org/10.1016/j.knosys.2020.106622
https://github.com/google/gin-config
https://github.com/omry/omegaconf
https://github.com/omry/omegaconf
https://github.com/dynaconf/dynaconf
https://github.com/dynaconf/dynaconf
https://github.com/facebookresearch/hydra
https://doi.org/10.21105/joss.05350

	Abstract
	Introduction
	Statement of Need
	Summary
	Acknowledgments
	References

