
GNS: A generalizable Graph Neural Network-based
simulator for particulate and fluid modeling
Krishna Kumar 1 and Joseph Vantassel 2,3

1 Assistant Professor, University of Texas at Austin, Texas, USA 2 Assistant Professor, Virginia Tech,
Virginia, USA 3 Texas Advanced Computing Center, University of Texas at Austin, Texas, USA

DOI: 10.21105/joss.05025

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @WPettersson
• @archermarx

Submitted: 13 November 2022
Published: 25 August 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Graph Network-based Simulator (GNS) is a framework for developing generalizable, efficient,
and accurate machine learning (ML)-based surrogate models for particulate and fluid systems
using Graph Neural Networks (GNNs). GNNs are the state-of-the-art geometric deep learning
(GDL) that operates on graphs to represent rich relational information (Scarselli et al., 2008),
which maps an input graph to an output graph with the same structure but potentially different
node, edge, and global feature attributes. The graph network in GNS spans the physical domain
with nodes representing an individual or a collection of particles, and the edges connecting the
vertices representing the local interaction between particles or clusters of particles. The GNS
computes the system dynamics via learned message passing. Figure 1 shows an overview of
how GNS learns to simulate n-body dynamics. The GNS has three components: (a) Encoder,
which embeds particle information to a latent graph, the edges represent learned functions; (b)
Processor, which allows data propagation and computes the nodal interactions across steps;
and (c) Decoder, which extracts the relevant dynamics (e.g., particle acceleration) from the
graph. The GNS learns the dynamics, such as momentum and energy exchange, through a
form of messages passing (Gilmer et al., 2017), where latent information propagates between
nodes via the graph edges. The GNS edge messages (𝑒′𝑘 ← 𝜙𝑒(𝑒𝑘, 𝑣𝑟𝑘 , 𝑣𝑠𝑘 , 𝑢)) are a learned
linear combination of the interaction forces. The edge messages are aggregated at every node
exploiting the principle of superposition ̄𝑒′𝑖 ← ∑𝑟𝑘=𝑖 𝑒

′
𝑖. The node then encodes the connected

edge features and its local features using a neural network: 𝑣′𝑖 ← 𝜙𝑣(̄𝑒𝑖, 𝑣𝑖, 𝑢).

Figure 1: An overview of the graph network simulator (GNS).

The GNS implementation uses semi-implicit Euler integration to update the state of the particles
based on the nodes predicted accelerations. We introduce physics-inspired simple inductive
biases, such as an inertial frame that allows learning algorithms to prioritize one solution
over another, instead of learning to predict the inertial motion, the neural network learns to
trivially predict a correction to the inertial trajectory, reducing learning time. We developed an
open-source, PyTorch-based GNS that predicts the dynamics of fluid and particulate systems

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

1

https://orcid.org/0000-0003-2144-5562
https://orcid.org/0000-0002-1601-3354
https://doi.org/10.21105/joss.05025
https://github.com/openjournals/joss-reviews/issues/5025
https://github.com/geoelements/gns
https://doi.org/10.5281/zenodo.8249813
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/WPettersson
https://github.com/archermarx
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05025

(Kumar & Vantassel, 2022). GNS trained on trajectory data is generalizable to predict particle
kinematics in complex boundary conditions not seen during training. Figure 2 shows the
GNS prediction of granular flow around complex obstacles trained on 20 million steps with 40
trajectories on NVIDIA A100 GPUs. The trained model accurately predicts within 5% error of
its associated material point method (MPM) simulation. The predictions are 5,000x faster than
traditional MPM simulations (2.5 hours for MPM simulations versus 20 s for GNS simulation of
granular flow) and are widely used for solving optimization, control and inverse-type problems.
In addition to surrogate modeling, GNS trained on flow problems is also used as an oracle to
predict the dynamics of flows to identify critical regions of interest for in situ rendering and
visualization (Kumar et al., 2022). The GNS code is distributed under the open-source MIT
license and is available on GitHub Geoelements GNS.

Figure 2: GNS prediction of granular flow on ramps, compared against MPM simulation.

Statement of need
Traditional numerical methods for solving differential equations are invaluable in scientific
and engineering disciplines. However, such simulators are computationally expensive and
intractable for solving large-scale and complex inverse problems, multiphysics, and multi-scale
mechanics. Surrogate models trade off generality for accuracy in a narrow setting. Recent
growth in data availability has spurred data-driven machine learning (ML) models that train
directly from observed data (Prume et al., 2022). ML models require significant training
data to cover the large state space and complex dynamics. Instead of ignoring the vast
amount of structured prior knowledge (physics), we can exploit such knowledge to construct
physics-informed ML algorithms with limited training data. GNS uses static and inertial priors
to learn the interactions between particles directly on graphs and can generalize with limited
training data (Veličković et al., 2017; Wu et al., 2020). Graph-based GNS offer powerful
data representations of real-world applications, including particulate systems, material sciences,
drug discovery, astrophysics, and engineering (Battaglia et al., 2018; Sanchez-Gonzalez et al.,
2020).

State of the art
Numerical methods, such as particle-based approaches or continuum strategies like Material
Point Method (Soga et al., 2016) and the Finite Element Method, serve as valuable tools
for modeling a wide array of real-world engineering systems. Despite their versatility, these
traditional numerical methods often prove computationally intensive, restricting them to a
handful of simulations. With the growth of material sciences and the escalating complexity
of engineering challenges, there is a pressing need to navigate expansive parametric spaces
and solve complex optimization and inverse analysis. However, the computational bottleneck

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

2

https://github.com/geoelements/gns
https://doi.org/10.21105/joss.05025

inherent in traditional methods thwarts our ability to achieve innovative data-driven discoveries.
A surrogate model presents a solution to this hurdle. However, most current neural network-
based surrogates operate as black box algorithms, lacking physics and underperforming when
extrapolation beyond training regions is needed. Consequently, there is a need to develop
generalizable surrogate models based on physics to bridge this gap effectively.

Sanchez-Gonzalez et al. (2020) developed a reference GNS implementation based on TensorFlow
v1 (Abadi et al., 2015). Although the reference implementation runs both on CPU and GPU,
it doesn’t achieve multi-GPU scaling. Furthermore, the dependence on TensorFlow v1 limits
its ability to leverage features such as eager execution in TF v2. We develop a scalable and
modular GNS using PyTorch using the Distributed Data Parallel model to run on multi-GPU
systems.

Key features
The Graph Network Simulator (GNS) uses PyTorch and PyTorch Geometric for constructing
graphs and learned message passing. GNS is highly-scalable to 100,000 vertices and more than
a million edges. The PyTorch GNS supports the following features:

• CPU and GPU training
• Parallel training on multi-GPUs
• Multi-material interactions
• Complex boundary conditions
• Checkpoint restart
• VTK results
• Animation postprocessing

GNS training and prediction
GNS models are trained on 1000s of particle trajectories from MPM (for sands) and Smooth
Particle Hydrodynamics (for water) for 20 million steps. GNS predicts the rollout trajectories of
particles, based on its training of MPM particle simulations. We employ Taichi MPM (Hu et al.,
2018) to compute the particle trajectories. The input to GNS includes the velocity context for
five timesteps. GNS computes the acceleration between the five timesteps using the timestep
𝛿𝑡. GNS then rolls out the next states 𝑋𝑖+5 →, … ,→ 𝑋𝑘, where 𝑋 is the set of particle
positions. We use the .npz format to store the training data, which includes a list of tuples of
arbitrary length where each tuple corresponds to a differenet training trajectory and is of the
form (position, particle_type). The position is a 3-D tensor of shape (n_time_steps,

n_particles, n_dimensions) and particle_type is a 1-D tensor of shape (n_particles).

Parallelization and scaling
The GNS is parallelized to run across multiple GPUs using the PyTorch Distributed Data
Parallel (DDP) model. The DDP model spawns as many GNS models as the number of
GPUs, distributing the dataset across all GPU nodes. Consider, our training dataset with 20
simulations, each with 206 time steps of positional data 𝑥𝑖, which yields (206−6)×20 = 4000
training trajectories. We subtract six position from the GNS training dataset as we utilize
five previous velocities, computed from six positions, to predict the next position. The 4000
training tajectories are subsequently distributed equally to the four GPUs (1000 training
trajectories/GPU). Assuming a batch size of 2, each GPU handles 500 trajectories in a batch.
The loss from the training trajectories are computed as difference between accelerations of
GNS prediction and actual trajectories.

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

3

https://doi.org/10.21105/joss.05025

𝑓(𝜃) = 1
𝑛

𝑛
∑
𝑖=1

((̈𝑥𝑖
𝑡)𝐺𝑁𝑆 − (̈𝑥𝑖

𝑡)𝑎𝑐𝑡𝑢𝑎𝑙) ,

where 𝑛 is the number of particles (nodes) and 𝜃 is the learnable parameter in the GNS. In
DDP, the gradient ∇(𝑓(𝜃)) is computed as the average gradient across all GPUs as shown in
Figure 3.

Figure 3: Distributed data parallelization in GNS.

We tested the strong scaling of the GNS code on a single node of Lonestar 6 at the Texas
Advanced Computing Center equipped with three NVIDIA A100 GPUs. We evaluated strong
scaling for the WaterDropSample dataset for 6000 training steps using the recommended nccl

DDP backend. Figure 4 shows linear strong scaling performance.

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

4

https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published//PRJ-3702/WaterDropSample
https://doi.org/10.21105/joss.05025

Figure 4: GNS strong-scaling on up to three NVIDIA A100 GPUs.

Acknowledgements
We acknowledge the support of National Science Foundation NSF OAC: 2103937.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., & others. (2018). Relational
inductive biases, deep learning, and graph networks. arXiv Preprint arXiv:1806.01261.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message
passing for quantum chemistry. International Conference on Machine Learning, 1263–1272.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., & Jiang, C. (2018). A moving least
squares material point method with displacement discontinuity and two-way rigid body
coupling. ACM Transactions on Graphics (TOG), 37(4), 150. https://doi.org/10.1145/
3197517.3201293

Kumar, K., Navratil, P., Solis, A., & Vantassel, J. (2022). Minority report: A graph-network
oracle for large-scale in situ visualization. IEEE.

Kumar, K., & Vantassel, J. (2022). Graph Network Simulator: v1.0.1 (Version v1.0.1).
https://doi.org/10.5281/zenodo.6658322

Prume, E., Reese, S., & Ortiz, M. (2022). Model-free data-driven inference in computational
mechanics. arXiv Preprint arXiv:2207.06419. https://doi.org/10.1016/j.cma.2022.115704

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

5

https://www.tensorflow.org/
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.5281/zenodo.6658322
https://doi.org/10.1016/j.cma.2022.115704
https://doi.org/10.21105/joss.05025

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P. (2020).
Learning to simulate complex physics with graph networks. International Conference on
Machine Learning, 8459–8468. https://dl.acm.org/doi/10.5555/3524938.3525722

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph
neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Soga, K., Alonso, E., Yerro, A., Kumar, K., & Bandara, S. (2016). Trends in large-deformation
analysis of landslide mass movements with particular emphasis on the material point
method. Géotechnique, 66(3), 248–273. https://doi.org/10.1680/jgeot.15.LM.005

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph
attention networks. arXiv Preprint arXiv:1710.10903.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems.

Kumar, & Vantassel. (2023). GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. Journal of Open
Source Software, 8(88), 5025. https://doi.org/10.21105/joss.05025.

6

https://dl.acm.org/doi/10.5555/3524938.3525722
https://doi.org/10.1680/jgeot.15.LM.005
https://doi.org/10.21105/joss.05025

	Summary
	Statement of need
	State of the art
	Key features
	GNS training and prediction
	Parallelization and scaling
	Acknowledgements
	References

