
anndata: Access and store annotated data matrices
Isaac Virshup 1,2, Sergei Rybakov 2, Fabian J. Theis 2,3, Philipp
Angerer ∗2, and F. Alexander Wolf †2

1 University of Melbourne, Australia 2 Helmholtz Munich, Germany 3 TU Munich, Germany
DOI: 10.21105/joss.04371

Software
• Review
• Repository
• Archive

Editor: Luiz Irber
Reviewers:

• @nlhepler
• @rcannood

Submitted: 16 December 2021
Published: 16 September 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
anndata is a Python package for handling annotated data matrices in memory and on disk
(github.com/scverse/anndata), positioned between pandas and xarray. anndata offers generic
data access features including, among others, sparse data support, lazy operations, and a
PyTorch interface.

Statement of need
Generating insight from high-dimensional data matrices typically works through training models
that annotate observations and variables via low-dimensional representations. In exploratory
data analysis, this involves iterative training and analysis using original and learned annotations
and task-associated representations. anndata offers a canonical data structure for book-keeping
these, which is neither addressed by pandas (McKinney, 2010), nor xarray (Hoyer & Hamman,
2017), nor commonly-used modeling packages like scikit-learn (Pedregosa et al., 2011).

Introduction
Since its initial publication as part of Scanpy (Wolf et al., 2018), anndata matured into an
independent software project and became widely adopted (694k total PyPI downloads & 48k
downloads/month, 225 GitHub stars & 581 dependent repositories).

anndata has been particularly useful for data analysis in computational biology where advances
in single-cell RNA sequencing (scRNA-seq) gave rise to new classes of analysis problems with
an increasing adoption of Python over the traditional R ecosystem (Zappia & Theis (2021), Fig.
2a). Previous bulk RNA datasets had few observations with dense measurements while more
recent scRNA-seq datasets come with high numbers of observations and sparse measurements,
both in 20k dimensions and more. These new data profit much from the application of the
scalable machine learning tools of the Python ecosystem.

The AnnData object
AnnData is designed for data scientists and was inspired by a similar data structure in the R
ecosystem, ExpressionSet (Huber et al., 2015), filling this gap in the Python ecosystem.1

Within the pydata ecosystem, xarray (Hoyer & Hamman, 2017) enables to deal with labeled
data tensors of arbitrary dimensions, while pandas (McKinney, 2010) operates on single data

∗Co-creator
†Co-creator; present affiliation at Lamin
1Please note that AnnData denotes the class (data structure), whereas anndata denotes the software package

(python module).

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

1

https://orcid.org/0000-0002-1710-8945
https://orcid.org/0000-0002-4944-6586
https://orcid.org/0000-0002-2419-1943
https://orcid.org/0000-0002-0369-2888
https://orcid.org/0000-0002-8760-7838
https://doi.org/10.21105/joss.04371
https://github.com/openjournals/joss-reviews/issues/4371
https://github.com/scverse/anndata
https://doi.org/10.5281/zenodo.13643180
https://luizirber.org
https://orcid.org/0000-0003-4371-9659
https://github.com/nlhepler
https://github.com/rcannood
https://creativecommons.org/licenses/by/4.0/
https://github.com/scverse/anndata
https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

matrices (tables) represented as DataFrame objects. anndata is positioned in between pandas
and xarray by providing structure that organizes data matrix annotations. In contrast to pandas
and xarray, AnnData offers a native on-disk format that allows sharing data with analysis results
in form of learned annotations.

e

connec-

tivities
obsm

o
b
s
_
n
a
m
e
s

obs_names

d

{ diag(ΣΣ) XU

S

c (X − X̄) = UΣVT

yX

b ̂y = f(X)

obsobsp

varp

varm

obsm X

layers

var

{…}
uns

var_namesobs_names

v
a
r
_
n
a
m
e
s

o
b
s
_
n
a
m
e
s

a

Figure 1: Structure of the AnnData object. a, The AnnData object is a collection of arrays aligned
to the common dimensions of observations (obs) and variables (var). Here, color is used to denote
elements of the object, with “warm” colors selected for elements aligned to the observations and “cool”
colors for elements aligned to variables. The object is centered around the main data matrix X, whose
two dimensions correspond to observations and variables respectively. Primary labels for each of these
dimensions are stored as obs_names and var_names. If needed, layers stores matrices of the exact
same shape as X. One-dimensional annotations for each dimension are stored in pandas DataFrames obs
and var. Multi-dimensional annotations are stored in obsm and varm. Pairwise relationships are stored
in obsp and varp. Unstructured data which doesn’t fit this model, but should stay associated to the
dataset are stored in uns. b, Let us discuss a few examples. The response variable ŷ learned from X is
stored as a one-dimensional annotation of observations. c, Principal components and the transformed
dimensionality-reduced data matrix obtained through PCA can be stored as multi-dimensional annotations
of variables and observations, respectively. d, A k-nearest neighbor graph of any desired representation is
stored as a sparse adjacency matrix of pairwise relationships among observations in obsp. This is useful
to have easy access to the connectivities of points on a low-dimensional manifold. e, Subsetting the
AnnData object by observations produces a view of data and annotations.

The data structure
Standardized data structures facilitate data science, with one of the most adopted standards
being tidy data (Wickham, 2014). anndata complies with tidy data but introduces additional
conventions by defining a data structure that makes use of conserved dimensions between data
matrix and annotations. With that, AnnData makes a particular choice for data organization
that has been left unaddressed by packages like scikit-learn or PyTorch (Paszke et al., 2019),
which model input and output of model transformations as unstructured sets of tensors.

At the core of AnnData is the measured data matrix from which we wish to generate insight (X).
Each data matrix element stores a value and belongs to an observation in a row (obs_names) and
a variable in a column (var_names), following the tidy data standard. Performing exploratory
data analysis with AnnData, one builds an understanding of the data matrix by annotating
observations and variables using AnnData’s fields (Figure 1) as follows:

• One-dimensional annotations get added to the main annotation DataFrame for each axis,
obs and var.

• Multi-dimensional representations get added to obsm and varm.
• Pair-wise relations among observations and variables get added to obsp and varp in

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

2

https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

form of sparse graph adjacency matrices.
• Unstructured dictionary-like annotations get added to a field uns.

Prior annotations of observations will often denote the experimental groups and conditions
that come along with measured data. Derived annotations of observations might be summary
statistics, cluster assignments, low-dimensional representations or manifolds. Annotations
of variables will often denote alternative names or measures quantifying feature importance.
AnnData also offers a field layers, which allows to store multiple data matrices of the same
shape.

In the context of how Wickham (2014) recommends to order variables, one can think of X as
contiguously grouping the data of a specific set of measured variables of interest, typically
high-dimensional readout data in an experiment. Other tables aligned to the observations axis
in AnnData are then available to store both fixed (meta-)data of the experiment and derived
data.

We note that adoption of tidy data (Wickham, 2014) leaves some room for ambiguity. For
instance, the R package tidySummarizedExperiment (Mangiola, 2021) provisions tables for
scRNA-seq data that take a long form that spreads variables belonging to the same observational
unit (a cell) across multiple rows. Generally, it may occur that there is no unique observational
unit that is defined through a joint measurement, for instance, by measuring variables in the
same system at the same time. It such cases, the tidy data layout is ambiguous and results in
longer or wider table layouts depending on what an analyst considers the observational unit.

The data analysis workflow
Let us illustrate how AnnData supports analysis workflows of iteratively learning representations
and scalar annotations. For instance, training a clustering, classification or regression model
on raw data in X produces an estimate of a response variable ŷ. This derived vector is
conveniently kept track of by adding it as an annotation of observations (obs, Figure 1b). A
reduced dimensional representation obtained through, say Principal Component Analysis or any
bottleneck layer of a machine learning model, would be stored as multi-dimensional annotation
(obsm, Figure 1c). Storing low-dimensional manifold structure within a desired reduced
representation is achieved through a k-nearest neighbor graph in form of a sparse adjacency
matrix: a matrix of pairwise relationships of observations (obsp, Figure 1d). Subsetting the
data by observations produces a memory-efficient view of AnnData (Figure 1e).

Data access principles
anndata offers sparse data support, out of core conversions between dense and sparse data, lazy
subsetting (“views”), per-element operations for low total memory usage, in-place subsetting,
combining AnnData objects with various merge strategies, lazy concatenation, batching, and a
backed out-of-memory mode.

While there is no production-ready API for working with sparse and dense data in the python
ecosystem, AnnData abstracts over the existing APIs making it much easier for novices to
handle each. This concerns handling data both on-disk and in-memory with operations for
out-of-core access. When access patterns are expected to be observation/row-based as in
batched learning algorithms, the user can store data matrices as CSR sparse matrices or C-order
dense matrices. For access along variables, for instance, to visualize gene expression across a
dataset, CSC sparse and Fortran order dense matrices allow fast access along columns.

The on-disk format
An AnnData object captures a unit of the data analysis workflow that groups original and
derived data together. Providing a persistent and standard on-disk format for this unit relieves
the pain of working with many competing formats for each individual element and thereby

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

3

https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

aids reproducibility. This is particularly needed as even pandas DataFrame has no canonical
persistent data storage format. AnnData has chosen the self-describing hierarchical data formats
HDF5 (Collette, 2013) and zarr (Miles et al., 2020) for this purpose (Figure 2), which are
compatible with non-Python programming environments. The broad compatibility and high
stability of the format led to wide adoption, and initiatives like the Human Cell Atlas (Regev et
al., 2017), HuBMAP (Consortium & others, 2019) and a NeurIPS 2021 competition (Luecken
et al., 2021) distribute their single-cell omics datasets through the HDF5 AnnData format
.h5ad.

.csv

.tsv

.loom

CellRanger output

…

adata.h5ad
 X: csr_matrix
 layers
 counts: csr_matrix
 obs: dataframe
 celltypes: categorical
 obsm
 pca: array
 varm
 pcs: array
 obsp
 connectivities: csr_matrix

.h5ad

.zarr

AnnData

external file formats external applicationsanndata in memory & on disk

…

Python APIs
…

Figure 2: AnnData provides broad interoperability with tools and platforms. AnnData objects can be
created from a number of formats, including common delimited text files, or domain-specific formats like
loom files or CellRanger outputs. Once in memory, AnnData provides an API for handling annotated
matrices, proving a common base object used by a range of analytic computational biology tools and
integrating well with the APIs of the established Python machine learning ecosystem. The in memory
format has a one-to-one relationship with its hierarchical on disk formats (mapping of elements indicated
by color) and uses language-independent technologies, enabling the use by non-Python applications and
interchange with other ecosystems.

Within HDF5 and zarr, we could not find a standard for sparse matrices and DataFrame objects.
To account for this, we defined a schema for these types, which specifies how these elements
can be read from disk to memory. This schema is versioned and stored in an internal registry,
which evolves with anndata while maintaining the ability to access older versions. On-disk
formats within this schema closely mirror their in-memory representations: Compressed sparse
matrices (CSR, CSC) are stored as a collection of three arrays, data, indices, and indptr,
while tabular data is stored in a columnar format.

The ecosystem
Over the past 5 years, an ecosystem of packages that are built around anndata has grown.
This ecosystem is highly focused on scRNA-seq (Figure 2), and ranges from Python APIs
(Zappia & Theis, 2021) to user-interface-based applications (Megill et al., 2021). Tools
like scikit-learn and UMAP (McInnes et al., 2020), which are designed around numpy and
not anndata, are still centered around data matrices and hence integrate seamlessly with
anndata-based workflows. Since releasing the PyTorch DataLoader interface AnnLoader and
the lazy concatenation structure AnnCollection, anndata also offers native ways of integrating
into the Pytorch ecosystem. scvi-tools (Gayoso et al., 2021) offers a widely used alternative
for this.

Through the language-independent on-disk format h5ad, interchange of data with non-Python
ecosystems is easily possible. For analysis of scRNA-seq data in R this has been further
simplified by anndata2ri, the CRAN anndata package (Cannoodt, 2021), and zellkonverter
(Zappia & Lun, 2022). These allow conversion to SingleCellExperiment (Amezquita et al.,
2020) and Seurat’s data format (Hao et al., 2020).

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

4

https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

s
p
l
i
c
e
d

u
n
s
p
l
i
c
e
d

c

obsp

o
b
s
_
n
a
m
e
s

obs_names

obsm X

varpmode1 mode2mode1 inter+ =

varvar
b

spatial

connectivty

obs_names

coords expression

{

a

Figure 3: Examples of how AnnData is used by packages in the ecosystem. a, Squidpy uses AnnData for
working with spatial data: the coordinates of each observation are stored in obsm, a spatial neighborhood
graph in obsp, and a complementary image is stored in uns. b, Multiple modalities can be represented in
multiple AnnData objects. The variables axis now corresponds to the union of variables across modalities.
Modality-specific and joint representations and manifolds are stored as separate elements in obsm or
obsp, while inter-modality relations can be stored as graphs in varp. c, AnnData allows for RNA velocity
analyses by storing counts of different splicing states as separate layers with velocity-based directed
graphs in obsp.

Let us give three examples of AnnData’s applications: spatial transcriptomics, multiple modali-
ties, and RNA velocity (Figure 3). In spatial transcriptomics, each high-dimensional observation
is annotated with spatial coordinates. Squidpy (Palla et al., 2021) uses AnnData to model
their data by storing spatial coordinates as an array (obsm) and a spatial neighborhood graph
(obsp), which is used to find features which are spatially correlated (Figure 3a). In addition,
values from the high-dimensional transcriptomic measurement can be overlaid on an image of
the sampled tissue, where an image array (reference) is stored in uns.

To model multimodal data, one approach is to join separate AnnData objects (Figure 3b) for
each modality on the observations index through anndata.concat. Relations between the
variables of different modalities can then be stored as graphs in varp, and analyses using
information from both modalities, like a joint manifold, in obsp. Formalizing this further, the
muon package (Bredikhin et al., 2021) offers a container-like object MuData for a collection of
AnnData objects, one for each modality. This structure extends to an on-disk format where
individual AnnData objects are stored as discrete elements inside h5mu files. This approach
has similarity with MultiAssayExperiment within the Bioconductor ecosystem (Ramos et al.,
2017).

AnnData has been used to model data for fitting models of RNA velocity (Bergen et al.,
2020) exploiting the layers field to store a set of matrices for different types of RNA counts
(Figure 3c).

Outlook
The anndata project is under active development towards more advanced out-of-core access, bet-
ter cloud & relational database integration, a split-apply-combine framework, and interchange
with more formats, like Apache Arrow or TileDB (Papadopoulos et al., 2016). Furthermore,
anndata engages with projects that aim at building out infrastructure for modeling multi-modal
(Bredikhin et al., 2021) and non-homogeneous data, for instance, to enable learning from
Electronic Health Records (Heumos & Theis, 2021). Finally, we aim at further complementing
anndata by interfacing with scientific domain knowledge and data provenance tracking.

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

5

https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

Acknowledgements
Isaac is grateful to Christine Wells for consistent support and freedom to pursue work on
anndata and Scanpy. We thank Ryan Williams and Tom White for contributing code related to
zarr and Jonathan Bloom for contributing a comprehensive PR on group-by functionality. Alex
and Phil thank Cellarity for supporting continued engagement with open source software. We
are grateful to Fabian’s lab for continuing dissemination along with Scanpy over the past years.
This project receives funding through CZI’s Essential Open Source Software for Science grant.

Author contributions
Isaac has led the anndata project since v0.7, and contributed as a developer before. His
contributions include generalized storage for sparse matrices, IO efficiency, dedicated graph
storage, concatenation, and general maintenance. Sergei made diverse contributions to the
code base, in particular, the first version of layers, benchmarking and improvement of the
earlier versions of the IO code, the PyTorch dataloader AnnLoader and the lazy concatenation
data structure AnnCollection. Fabian contributed to supervision of the project. Phil co-
created the package. He suggested to replace Scanpy’s initial unstructured annotated data
object to one mimicking R’s ExpressionSet, and wrote AnnData’s first implementation with
indexing and slicing affecting one-dimensional metadata and the central matrix. He further
ascertained good software practices in the project, authored the documentation tool extensions
for scanpy and anndata and anndata2ri, a library for in-memory conversion between anndata
and SingleCellExperiment. Alex co-created the package. He introduced centering data science
workflows around an initially unstructured annotated data object, designed the API, wrote
tutorials and documentation until v0.7, and implemented most of the early functionality,
among others, reading & writing, the on-disk format h5ad, views, sparse data support,
concatenation, backed mode. Isaac and Alex wrote the paper with help from all co-authors
(github.com/ivirshup/anndata-paper).

Competing interests
Fabian consults for Immunai Inc., Singularity Bio B.V., CytoReason Ltd, and Omniscope
Ltd, and has ownership interest in Cellarity Inc. and Dermagnostix GmbH. Phil and Alex are
full-time employees of Cellarity Inc., and have ownership interest in Cellarity Inc..

References
Amezquita, R. A., Lun, A. T., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Marini,

F., Rue-Albrecht, K., Risso, D., Soneson, C., & others. (2020). Orchestrating single-cell
analysis with bioconductor. Nature Methods, 17(2), 137–145. https://doi.org/10.1038/
s41592-019-0654-x

Bergen, V., Lange, M., Peidli, S., Wolf, F., & Theis, F. (2020). Generalizing RNA velocity to
transient cell states through dynamical modeling. Nature Biotechnology, 38(12), 1408–1414.
https://doi.org/10.1038/s41587-020-0591-3

Bredikhin, D., Kats, I., & Stegle, O. (2021). Muon: Multimodal omics analysis framework.
bioRxiv. https://doi.org/10.1101/2021.06.01.445670

Cannoodt, R. (2021). Anndata: ’Anndata’ for r. CRAN. https://doi.org/10.32614/cran.
package.anndata

Collette, A. (2013). Python and HDF5. O’Reilly.

Consortium, H., & others. (2019). The human body at cellular resolution: The NIH

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

6

https://github.com/scverse/scanpy/commit/315859c5586116434ea3b7ce97512a5e2a1030e2
https://github.com/scverse/scanpy/tree/c22e48abe45a6ccca5918bbf689637caa4b31250
https://github.com/ivirshup/anndata-paper
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1101/2021.06.01.445670
https://doi.org/10.32614/cran.package.anndata
https://doi.org/10.32614/cran.package.anndata
https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

human biomolecular atlas program. Nature, 574(7777), 187. https://doi.org/10.1038/
s41586-019-1629-x

Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Melhman, E., Langevin,
M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C., Ashuach, T.,
Lotfollahi, M., Svensson, V., Beltrame, E. da V., Talavera-López, C., … Yosef, N. (2021).
Scvi-tools: A library for deep probabilistic analysis of single-cell omics data. bioRxiv.
https://doi.org/10.1101/2021.04.28.441833

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., Lee, M. J., Wilk, A.
J., Darby, C., Zagar, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. P., Jain, J.,
Srivastava, A., Stuart, T., Fleming, L. B., Yeung, B., … Satija, R. (2020). Integrated analysis
of multimodal single-cell data. Cell, 184, 3573. https://doi.org/10.1016/j.cell.2021.04.048

Heumos, L., & Theis, F. (2021). Ehrapy: Exploratory analysis of electronic health records.
https://doi.org/10.1101/2023.12.11.23299816

Hoyer, S., & Hamman, J. (2017). Xarray: ND labeled arrays and datasets in python. Journal
of Open Research Software, 5(1), 10. https://doi.org/10.5281/zenodo.264282

Huber, W., Carey, V., Gentleman, R., Anders, S., Carlson, M., Carvalho, B., Bravo, H., Davis,
S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K., Irizarry, R., Lawrence, M.,
Love, M., MacDonald, J., Obenchain, V., Oleś, A., … Morgan, M. (2015). Orchestrating
high-throughput genomic analysis with bioconductor. Nature Methods, 12(2), 115–121.
https://doi.org/10.1038/nmeth.3252

Luecken, M. D., Burkhardt, D. B., Cannoodt, R., Lance, C., Agrawal, A., Aliee, H., Chen,
A. T., Deconinck, L., Detweiler, A. M., Granados, A. A., Huynh, S., Isacco, L., Kim, Y.
J., Klein, D., KUMAR, B. D., Kuppasani, S., Lickert, H., McGeever, A., Mekonen, H., …
Bloom, J. M. (2021). A sandbox for prediction and integration of DNA, RNA, and proteins
in single cells. Thirty-Fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2). https://openreview.net/forum?id=gN35BGa1Rt

Mangiola, S. (2021). tidySummarizedExperiment: Brings SummarizedExperiment to the
tidyverse. Bioconductor. https://doi.org/10.18129/B9.bioc.tidySummarizedExperiment

McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform manifold approximation and
projection for dimension reduction. arXiv, 1802.03426. https://doi.org/10.48550/arXiv.
1802.03426

McKinney, W. (2010). Data structures for statistical computing in python (pp. 51–56). Austin,
TX. https://doi.org/10.25080/majora-92bf1922-00a

Megill, C., Martin, B., Weaver, C., Bell, S., Prins, L., Badajoz, S., McCandless, B., Pisco, A.
O., Kinsella, M., Griffin, F., Kiggins, J., Haliburton, G., Mani, A., Weiden, M., Dunitz,
M., Lombardo, M., Huang, T., Smith, T., Chambers, S., … Carr, A. (2021). Cellxgene: A
performant, scalable exploration platform for high dimensional sparse matrices. bioRxiv.
https://doi.org/10.1101/2021.04.05.438318

Miles, A., Kirkham, J., Durant, M., Bourbeau, J., Onalan, T., Hamman, J., Patel, Z., shikharsg,
Rocklin, M., dussin, raphael, Schut, V., Andrade, E. S. de, Abernathey, R., Noyes, C.,
sbalmer, bot, pyup.io, Tran, T., Saalfeld, S., Swaney, J., … Banihirwe, A. (2020). Zarr.
Zenodo. https://doi.org/10.5281/zenodo.3773450

Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A. C., Kuemmerle, L. B., Rybakov,
S., Ibarra, I. L., Holmberg, O., Virshup, I., Lotfollahi, M., Richter, S., & Theis, F. J.
(2021). Squidpy: A scalable framework for spatial single cell analysis. bioRxiv. https:
//doi.org/10.1101/2021.02.19.431994

Papadopoulos, S., Datta, K., Madden, S., & Mattson, T. (2016). The tiledb array data storage
manager. Proceedings of the VLDB Endowment, 10(4), 349–360. https://doi.org/10.

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

7

https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1101/2021.04.28.441833
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1101/2023.12.11.23299816
https://doi.org/10.5281/zenodo.264282
https://doi.org/10.1038/nmeth.3252
https://openreview.net/forum?id=gN35BGa1Rt
https://doi.org/10.18129/B9.bioc.tidySummarizedExperiment
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1101/2021.04.05.438318
https://doi.org/10.5281/zenodo.3773450
https://doi.org/10.1101/2021.02.19.431994
https://doi.org/10.1101/2021.02.19.431994
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

14778/3025111.3025117

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). https://doi.org/10.48550/arXiv.1912.01703

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Ramos, M., Schiffer, L., Re, A., Azhar, R., Basunia, A., Rodriguez, C., Chan, T., Chapman, P.,
Davis, S. R., Gomez-Cabrero, D., Culhane, A. C., Haibe-Kains, B., Hansen, K. D., Kodali,
H., Louis, M. S., Mer, A. S., Riester, M., Morgan, M., Carey, V., & Waldron, L. (2017).
Software for the integration of multiomics experiments in bioconductor. Cancer Research,
77 (21), e39–e42. https://doi.org/10.1158/0008-5472.can-17-0344

Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B.,
Campbell, P., Carninci, P., Clatworthy, M., & others. (2017). Science forum: The human
cell atlas. Elife, 6, e27041. https://doi.org/10.7554/eLife.27041

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10), 1–23.

Wolf, F. A., Angerer, P., & Theis, F. J. (2018). SCANPY: Large-scale single-cell gene expression
data analysis. Genome Biology, 19(1), 15. https://doi.org/10.1186/s13059-017-1382-0

Zappia, L., & Lun, A. (2022). Conversion between scRNA-seq objects. Bioconductor.
https://doi.org/10.18129/B9.bioc.zellkonverter

Zappia, L., & Theis, F. J. (2021). Over 1000 tools reveal trends in the single-cell RNA-seq analy-
sis landscape. Genome Biology, 22(1), 1–18. https://doi.org/10.1186/s13059-021-02519-4

Virshup et al. (2024). anndata: Access and store annotated data matrices. Journal of Open Source Software, 9(101), 4371. https://doi.org/10.
21105/joss.04371.

8

https://doi.org/10.14778/3025111.3025117
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1158/0008-5472.can-17-0344
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.18129/B9.bioc.zellkonverter
https://doi.org/10.1186/s13059-021-02519-4
https://doi.org/10.21105/joss.04371
https://doi.org/10.21105/joss.04371

	Summary
	Statement of need
	Introduction
	The AnnData object
	The data structure
	The data analysis workflow
	Data access principles
	The on-disk format

	The ecosystem
	Outlook
	Acknowledgements
	Author contributions
	Competing interests
	References

