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Summary

We present and release Omnizart, a new Python library that provides a streamlined solu-
tion to automatic music transcription (AMT). Omnizart encompasses modules that construct
the life-cycle of deep learning-based AMT, and is designed for ease of use with a compact
command-line interface. To the best of our knowledge, Omnizart is the first toolkit that offers
transcription models for various music content including piano solo, instrument ensembles, per-
cussion and vocal. Omnizart also supports models for chord recognition and beat/downbeat
tracking, which are highly related to AMT.
In summary, Omnizart incorporates:

• Pre-trained models for frame-level and note-level transcription of multiple pitched in-
struments, vocal melody, and drum events;

• Pre-trained models of chord recognition and beat/downbeat tracking;
• The main functionalities in the life-cycle of AMT research, covering dataset downloading,

feature pre-processing, model training, to the sonification of the transcription result.

Omnizart is based on Tensorflow (Abadi et al., 2016). The complete code base, command-
line interface, documentation, as well as demo examples can all be accessed from the project
website.

Statement of need

AMT of polyphonic music is a complicated MIR task because the note-, melody-, timbre-,
and rhythm-level attributes of music are overlapped with each other in music signals. A uni-
fied solution of AMT is therefore in eager demand. AMT is also strongly related to other
MIR tasks such as source separation and music generation with transcribed data needed as
supervisory resources. Omnizart considers multi-instrument transcription and collects several
state-of-the-art models for transcribing pitched and percussive instruments, as well as singing
voice, within polyphonic music signals. Omnizart is an AMT tool that unifies multiple tran-
scription utilities and enables further productivity. Omnizart can save one’s time and labor in
generating a massive number of multi-track MIDI files, which could have a large impact on
music production, music generation, education, and musicology research.
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Implementation Details

Piano solo transcription

The piano solo transcription model in Omnizart reproduces the implementation of Wu et al.
(2020). The model features a U-net that takes as inputs the audio spectrogram, generalized
cepstrum (GC) (Su & Yang, 2015), and GC of spectrogram (GCoS) (Wu et al., 2018), and
outputs a multi-channel time-pitch representation with time- and pitch-resolution of 20 ms
and 25 cents, respectively. For the U-net, implementation of the encoder and the decoder
follows DeepLabV3+ (L.-C. Chen et al., 2018), and the bottleneck layer is adapted from the
Image Transformer (Parmar et al., 2018).
The model is trained on the MAESTRO dataset (Hawthorne et al., 2019), an external dataset
containing 1,184 real piano performance recordings with a total length of 172.3 hours. The
model achieves 72.50% and 79.57% for frame- and note-level F1-scores, respectively, on the
Configuration-II test set of the MAPS dataset (Kelz et al., 2016).

Multi-instrument polyphonic transcription

The multi-instrument transcription model extends the piano solo model to support 11 output
classes, namely piano, violin, viola, cello, flute, horn, bassoon, clarinet, harpsichord, contra-
bass, and oboe, accessed from MusicNet (Thickstun et al., 2017). Detailed characteristics of
the model can be seen in Wu et al. (2020). The evaluation on the test set from MusicNet
(Thickstun et al., 2018) yields 66.59% for the note streaming task.

Drum transcription

The model for drum transcription is a re-implementation of Wei et al. (2021). Building blocks
of the network include convolutional layers and the attention mechanism.
The model is trained on a dataset with 1,454 audio clips of polyphonic music with synchronized
drum events (Wei et al., 2021). The model demonstrates SoTA performance on two commonly
used benchmark datasets, i.e., 74% for ENST (Gillet & Richard, 2006) and 71% for MDB-
Drums (Southall et al., 2017) in terms of the note-level F1-score.

Vocal transcription in polyphonic music

The system for vocal transcription features a pitch extractor and a module for note segmen-
tation. The inputs to the model are composed of spectrogram, GS, and GCoS derived from
polyphonic music recordings (Wu et al., 2018).
A pre-trained Patch-CNN (Su, 2018) is leveraged as the pitch extractor. The module for note
segmentation is implemented with PyramidNet-110 and ShakeDrop regularization (Yamada et
al., 2019), which is trained using Virtual Adversarial Training (Miyato et al., 2019) enabling
semi-supervised learning.
The training data includes labeled data from TONAS (Mora et al., 2010) and unlabeled data
from MIR-1K (Hsu & Jang, 2009). The model yields the SoTA F1-score of 68.4% evaluated
with the ISMIR2014 dataset (Molina et al., 2014).
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Chord recognition

The harmony recognition model of Omnizart is implemented using the Harmony Transformer
(HT) (T.-P. Chen & Su, 2019). The HT model is based on an encoder-decoder architecture,
where the encoder performs chord segmentation on the input, and the decoder recognizes the
chord progression based on the segmentation result.
The original HT supports both audio and symbolic inputs. Currently, Omnizart supports only
audio inputs. A given audio input is pre-processed using Chordino VAMP plugin (Mauch
& Dixon, 2010) as the non-negative-least-squares chromagram. The outputs of the model
include 25 chord types, covering 12 major and minor chords together with a class referred to
the absence of chord, with a time resolution of 230 ms.
In an experiment with evaluations on the McGill Billboard dataset (Burgoyne et al., 2011),
the HT outperforms the previous state of the art (T.-P. Chen & Su, 2019).

Beat/downbeat tracking

The model for beat and downbeat tracking provided in Omnizart is a reproduction of Chuang
& Su (2020). Unlike most of the available open-source projects such as madmom (Böck et al.,
2016) and librosa (McFee et al., 2015) which focus on audio, the provided model targets
symbolic data.
The input and output of the model are respectively MIDI and beat/downbeat positions with
the time resolution of 10 ms. The input representation combines piano-roll, spectral flux, and
inter-onset interval extracted from MIDI. The model composes a two-layer BLSTM network
with the attention mechanism, and predicts probabilities of the presence of beat and downbeat
per time step.
Experiments on the MusicNet dataset (Thickstun et al., 2018) with the synchronized beat
annotation show that the proposed model outperforms the state-of-the-art beat trackers which
operate on synthesized audio (Chuang & Su, 2020).

Conclusion

Omnizart represents the first systematic solution for the polyphonic AMT of general music
contents ranging from pitched instruments, percussion instruments, to voices. In addition to
note transcription, Omnizart also includes high-level MIR tasks such as chord recognition and
beat/downbeat tracking. As an ongoing project, the research group will keep refining the
package and extending the scope of transcription in the future.
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