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Summary

TBFMM, for task-based FMM, is a high-performance package that implements the parallel fast
multipole method (FMM) in modern C++17. It implements parallel strategies for multicore
architectures, i.e. to run on a single computing node. TBFMM was designed to be easily cus-
tomized thanks to C++ templates and fine control of the C++ classes’ inter-dependencies.
Users can implement new FMM kernels, new types of interacting elements or even new par-
allelization strategies. As such, it can be used as a simulation toolbox for scientists in physics
or applied mathematics. It enables users to perform simulations while delegating the data
structure, the algorithm and the parallelization to the library. Besides, TBFMM can also provide
an interesting use case for the HPC research community regarding parallelization, optimization
and scheduling of applications handling irregular data structures.

Background

The fast multipole method (Greengard & Rokhlin, 1987) has been classified as one of the most
important algorithms of the 20th century (Cipra, 2000). The FMM algorithm was designed
to compute pair-wise interactions between N particles, which belong to the class of n-body
problems. It reduces the complexity from a quadratic (N elements interact with N elements) to
a quasi-linear complexity. The central idea of the FMM is to avoid computing the interactions
between all the elements by approximating the interactions between elements that are far
enough. To make this possible, the algorithm requires the potential of the interactions to
decrease as the distance between interacting elements increases. The algorithm also requires
that the kernel to approximate far interactions exists; providing an approximation kernel for
a physical equation can be challenging. Internally, the FMM is usually implemented with a
tree that is mapped over the simulation box. A cell, i.e. a node of the tree, represents a
part of the simulation box and is used by the algorithm to factorize the interactions between
elements. The FMM was later extended for different types of physical simulations and different
approximation kernels (Barba & Yokota, 2011; Blanchard et al., 2016; Blanchard, Coulaud, &
Darve, 2015; Darve et al., 2013; Darve & Havé, 2004; Frangi et al., 2003; Malhotra & Biros,
2015; Pham et al., 2012; Sabariego et al., 2004; Vazquez Sabariego, 2004).
The FMM algorithm is based on six operators with names that respect the format X2Y, where
X represents the source of the operator and Y the destination. The operators are P2M, M2M,
M2L, L2L, L2P and P2P, where P means particle, M multipole and L local. The term particle is
used for a legacy reason, but it represents the basic interaction elements that interact and for
which we want to approximate the interactions. The multipole part represents the aggregation
of potential, i.e. it represents what is emitted by a sub-part of the simulation box, whereas
the local part represents the outside that is emitted onto a sub-part of the simulation box.
The different operators are schematized in Figure 1.
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Figure 1: Illustration of the FMM algorithm. (a,b,c) The building of the octree. (d,e,f,g) The FMM
algorithm and its operators.

Because the FMM is a fundamental building block for many types of simulation, its paralleliza-
tion has already been investigated. Some strategies for parallelizing over multiple distributed
memory nodes have been developed using classical HPC technologies like MPI (Forum, 1994)
and fork-join threaded libraries (Bérenger Bramas, 2016). Using these technologies, different
projects have created FMM implementations that scale on thousands of computing nodes
(Abduljabbar et al., 2019; Lashuk et al., 2009; Malhotra & Biros, 2015). However, when
using a single node, it has been demonstrated that fork-join schemes are less efficient than
task-based parallelization on multicore CPUs (Emmanuel Agullo et al., 2014). This is because
some stages of the FMM have a small degree of parallelism (for instance at the top of the
tree), while others have a high degree of parallelism. For instance, the P2P in the direct pass
has a significant workload available from the early beginning of each iteration. The task-based
method can interleave the different operators, hence to balance the workload across the pro-
cessing units and to spread the critical parts over time. Moreover, the task-based method
is well designed for handling heterogeneous architecture (Emmanuel Agullo et al., 2016) and
has demonstrated a promising performance on distributed memory platforms too (Emmanuel
Agullo et al., 2017).
In a previous project called ScalFMM, we have provided a new hierarchical data structure called
group-tree (or block-tree), which is an octree designed for the task-based method (Bérenger
Bramas, 2016). The two main ideas behind this container are (1) to allocate and manage
several cells of the same level together to control the granularity of the tasks, and (2) to store
the symbolic data, the multipole data, and the local data in a different memory blocks. This
allows us to move each block anywhere on the memory nodes and to declare the dependencies
on each sub-part.
A schematic view of the group-tree is given in Figure 2.
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Figure 2: Group-tree schematic view. Several cells/leaves are managed together inside a block. Also,
the symbolic, multipole and local data are allocated separately to allow declaring the data accesses
on each sub-part.

Statement of need

The FMM is a major algorithm but it remains rare to have it included in HPC benchmarks
when studying runtime systems, schedulers or optimizers. The principal reason is that it is
tedious to implement and requires a significant programming effort when using the task-based
method together with the group-tree. However, it is an interesting, if not unique, algorithm to
study irregular/hierarchical scientific method. For the same reason, it is difficult for researchers
in physics or applied mathematics to implement a complete FMM library and to optimize it
for modern hardware, especially if their aim is to focus on approximation kernels. Therefore,
TBFMM can be useful for both communities.
Among the few existing FMM libraries, ScalFMM is the closer package to TBFMM. ScalF
MM supports lots of different parallel strategies, including fork-join implementations, and it
contains several experimental methods. Consequently, ScalFMM has around 170K lines of
code, for only 50K for TBFMM. Moreover, it needs several external dependencies and does not
benefit from the new standard C++ features that could improve code readability. Besides,
it only works for 3D problems, whereas TBFMM’s tree and algorithms supports any number
of dimensions. These have been the main motivations to re-implement a lightweight FMM
library from scratch that only supports task-based parallelization.
However, the interface of the kernels is very similar in both libraries, such that creating a
kernel for ScalFMM or TBFMM and porting it to the other library is straightforward.
FMMTL (Cecka & Layton, 2015) is another existing FMM library with a generic C++ design.
Similar to TBFMM, FMMTL works with various types of kernels. However, it relies on a fork-join
parallelization strategy on top of OpenMP and on the Thrust library to support GPUs. While
this approach is elegant and makes the code clean, it is also more complex to fine tune the
scheduling, the load balancing, and the data movement.
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Features

Genericity

TBFMM has a generic design thanks to the heavy use of C++ templates. Users must provide
arguments for the various template parameters of the main classes. The tree and the kernel
classes are independent of each other and from the algorithm. The algorithm class needs the
type of the kernel as a template argument, and its core execute method has to be templatized
with the type of the tree. The algorithm takes the elements from the tree and passes them
to the kernel, such that a kernel itself never accesses the tree. This is illustrated by Figure 3.

Figure 3: TBFMM design overview. Template arguments must be used to ensure that the algorithm
knows the types of the tree and the kernel, and that the tree knows the types of the cells/particles.
The algorithm has to be selected among different variants (sequential, parallel OpenMP, or parallel
SPETABARU).

Tree

TBFMM uses the group-tree where several cells of the same level are managed together. Users
can select the size of the groups, which impacts the size of the tasks, however, TBFMM also
provides a simple heuristic to automatically find a size that should provide efficient executions.
Also, the tree class provides different methods to iterate on the cells/leaves as any container,
such that it is possible to work on the elements of the tree with an abstraction mechanism
and without knowing how it is implemented internally.

Kernel

As stated in the objectives, TBFMM is a tool for scientists from physics and applied mathematics
to create new kernels. TBFMM offers a convenient way to customize the kernel and to benefit
from the underlying parallelization engine automatically. With this aim, a user has to create
a new kernel that respects an interface, as described by the package documentation. The
current package contains two FMM kernels, the rotation kernel based on the rotation-based
operators and the spherical harmonics (Dachsel, 2006; Haigh, 2011; White & Head‐Gordon,
1994, 1996), and the uniform kernel based on Lagrange interpolation (Blanchard et al., 2016;
Blanchard, Coulaud, Darve, & Bramas, 2015; Blanchard, Coulaud, & Darve, 2015).

Parallelization

TBFMM has two task-based parallel algorithms based on two runtime systems: OpenMP version
4 (OpenMP Architecture Review Board, 2013) and SPETABARU (Bérenger Bramas, 2019).
Both are optional, such that the library can be compiled even if the compiler does not support

Bramas, B., (2020). TBFMM: A C++ generic and parallel fast multipole method library. Journal of Open Source Software, 5(56), 2444.
https://doi.org/10.21105/joss.02444

4

https://doi.org/10.21105/joss.02444


OpenMP or if the Git sub-module for SPETABARU has not been activated. OpenMP is an API
that evolves slowly, which maintains backward compatibility and which is implemented by
different libraries that respect the standard. On the other hand, SPETABARU is our task-based
runtime system that we use for research, and which continuously evolves. The data accesses
of the FMM operators in write are usually commutative (E. Agullo et al., 2017). While
SPETABARU supports commutative write access, OpenMP only supports it from version 5
with the mutexinout data access. OpenMP version 5 is currently not fully supported by the
compilers, however, when a compiler that supports this access will be used with TBFMM, the
mutexinout will be activated automatically.

Periodicity

The periodicity consists of considering that the simulation box is repeated in all directions,
as shown by Figure 4. Computing the FMM algorithm with periodicity is usually done in two
steps. In the first one, the regular algorithm and tree are used. When the algorithm needs
cells outside of the boundaries, it selects cells at the opposite side of the simulation box.
While in the second step, a numerical model is used to compute a potential that represents
the world outside the simulation box. Such a model could be the Ewald summation (Rokhlin
& Wandzura, 1994).

Figure 4: In the periodic FMM, the simulation box is considered to be in the middle of an infinite
volume of the same kind.

In TBFMM, we have implemented a different approach, which is a pure algorithmic strategy
(Bérenger Bramas, 2016). The idea is to consider that the real simulation box is a sub-part
of a larger simulation box, i.e. that the real tree is a branch of a larger tree. Then, instead
of stopping the FMM algorithm at level 2, we continue up until the root where the multipole
part of the root represents the complete simulation box. We use it by continuing the FMM
algorithm partially above the root, by aggregating the cells together multiple times. By doing
so, we have several advantages. This method needs nothing more than an FMM kernel, which
is expected to be the same as the one used without periodicity. Therefore, the method is
generic and can work with any FMM kernel. Moreover, the accuracy of the method relies fully
on the FMM kernel. Figure 5 shows how the simulation box is repeated with this method.
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Figure 5: How the simulation box is repeated when using a periodic FMM algorithm.

Vectorization (Inastemp)

When implementing a kernel, some parts can rely on well-optimized numerical libraries, such
as BLAS or FFTW, however, others might be implemented directly in C/C++. In this case,
it usually provides a significant improvement in performance to vectorize the code, which
allows benefiting from the SIMD capability of modern CPUs. With this aim, TBFMM can
include a vectorization library called Inastemp (Berenger Bramas, 2017) by simply cloning
the corresponding Git sub-module. Using Inastemp, it is possible to write a single code
with an abstract vector data type and to select at compile time the desired instruction set
depending on the CPU (SSE, AVX, SVE, etc.). In the current version of TBFMM, the P2P
operator of the two kernels that are provided for demonstration is vectorized with Inastemp.

Performance

In Figure 6, we provide the parallel efficiency of TBFMM for a set of particles that are randomly
distributed in a square simulation box. The given results have been computed using the
uniform kernel and the two runtime systems OpenMP (GNU libomp) and SPETABARU.
Both implementation are similar; they use the same input data, the same tasks, the same
priorities. The only differences are coming from the implementation of the runtime systems,
which impact the overhead, and the type of data access they support. We recall that OpenMP
4.5 does not support mutexinout for commutative data access. In our case, the resulting
degree of parallelism is then too limited to feed all the available cores. This is already a problem
with 2 threads, and there is even no reduction in the execution time with more than 8 threads,
which appears as a significant drop in the parallel efficiency. Even so, we believe that it would
be possible to improve our OpenMP-based implementation by inserting the tasks differently.
Instead, we will wait that the OpenMP library implementations support mutexinout.
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Figure 6: Parallel efficiency for TBFMM using the OpenMP and SPETABARU runtime systems, and
the uniform kernel (order = 8). Test cases: two simulations, of one and ten million particles, randomly
distributed in a cube. Hardware: 2 × Intel Xeon Gold 6240 CPU at 2.60GHz with 16 cores each and
cache of sizes L1/32K, L2/1024K, L3/25344K.

Conclusion & Perspective

TBFMM is a lightweight FMM library that could be used for research in HPC and applied
mathematics. We will include it in our benchmarks to evaluate scheduling strategies, but also
to validate new approaches to develop numerical applications on heterogeneous computing
nodes. Indeed, we would like to offer an elegant way for users to add GPU kernels while
delegating most of the complexity to TBFMM and SPETABARU. We also plan to provide an MPI
version to support distributed memory parallelization shortly.
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