
MetSim: A Python package for estimation and
disaggregation of meteorological data
Andrew R. Bennett1, Joseph J. Hamman2, and Bart Nijssen1

1 Department of Civil and Environmental Engineering, University of Washington 2 Climate and
Global Dynamics Laboratory, National Center for Atmospheric Research

DOI: 10.21105/joss.02042

Software
• Review
• Repository
• Archive

Editor: Stefan Pfenninger
Reviewers:

• @Chilipp
• @dsryberg

Submitted: 16 January 2020
Published: 27 March 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

While there has been a boom in the availablity of climate, weather, and environmental data
thanks to satellite observations, syntheses of in situ observed data sets, and the ubiquity
of powerful computers, it is also still often the case that the required data to run complex
environmental models is either missing, or at the wrong spatial or temporal resolution. For
example, incoming shortwave radiation, longwave radiation, and humidity are often observed
with varying record lengths and observation intervals. Further, even when such quantities are
measured it is often at a daily timestep, while many environmental models require finer time
scales for simulation. To provide the necessary data to solve the model equations in such
circumstances we must be able to provide estimates for these quantities at the appropriate
temporal resolution. MetSim is a Python package and standalone tool for the estimation
of meteorological quantities at variable time scales that can address the issues described
above. The data that MetSim can generate covers most of the variables that sophisticated
environmental models may require as input, making it possible to run them in a wider variety of
situations than is possible with off-the-shelf datasets. This is especially important in fields such
as hydrology and ecology, where there is an increasing push towards finer scale data than is
commonly available. MetSim can be used to generate spatially distributed sub-daily timeseries
of incoming shortwave radiation, outgoing longwave radiation, air pressure, specific humidity,
relative humidity, vapor pressure, precipitation, and air temperature given daily timeseries of
minimum temperature, maximum temperature, and precipitation. Figure 1 shows an example
of MetSim’s transformations of these daily values into some of the available subdaily outputs.
A summary of the available output variables and tunable parameters are included in the
documentation.

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

1

https://doi.org/10.21105/joss.02042
https://github.com/openjournals/joss-reviews/issues/2042
https://github.com/UW-Hydro/MetSim
https://doi.org/10.5281/zenodo.3728015
https://www.pfenninger.org/
https://github.com/Chilipp
https://github.com/dsryberg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02042


Figure 1: An example of MetSim input and output. The daily values are shown on the left are used
as input along with a number of parameters to produce the hourly output shown on the right. The
sample data used to generate this figure is included in the MetSim repository.

We have based MetSim on methods from the Mountain Microclimate Simulator (MTCLIM) and
the forcing preprocessor that was built into the Variable Infiltration Capacity (VIC) hydrological
model version 4 (Bohn et al., 2013; Liang, Lettenmaier, Wood, & Burges, 1994; Thornton
& Running, 1999). The development of MetSim was motivated by gaps in the approaches of
both MTCLIM and the VIC forcing preprocessor. The MTCLIM software has not been updated
since 2003 and the software does not implement the forcing disaggregation routines which are
necessary for models to run at sub-daily timesteps. Recent developments on the VIC model
have removed the forcing preprocessor due to algorithmic changes in the model driver. We
noticed that processors for forcing estimation and disaggregation usually were implemented
as ad hoc solutions based on similar workflows and algorithms, and wanted to formalize the
process of generating forcing data by developing MetSim. At the same time, this provides a
basis for others to expand a set of commonly available routines.
MetSim provides a modern workflow, building upon previous tools by improving performance by
adding scalable parallelism, adding new IO routines, allowing for exact restarts, and providing
an extensible architecture which can incorporate new features. We have implemented MetS
im in a way that allows for runs on arbitrary spatial configurations and at arbitrary spatial
scales, as opposed to the forced latitude-longitude grid that was used in the VIC preprocessor.
We have designed MetSim to fit into the broader scientific Python ecosystem, building on
popular packages such as xarray (Hoyer & Hamman, 2017), dask (Rocklin, 2015), pandas
(McKinney, 2010), and numba (Lam, Pitrou, & Seibert, 2015).

Architecture and performance

MetSim’s architecture follows the common design of a model driver that coordinates high level
operations and that delegates computation to several modules to do the bulk of the work.
The top level model driver handles all IO routines as well as job scheduling and parallelism. A
schematic representation of MetSim’s architecture is shown in Figure 2. MetSim provides both
a command line tool and API access as a Python module. The command line tool provides
an interface to the driver via configuration files and command line options.

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

2

https://doi.org/10.21105/joss.02042


Figure 2: A schematic representation of the MetSim software flow

MetSim has three main computation modules for solar geometry, meteorological simulation,
and temporal disaggregation. The solar geometry module computes the daily potential radia-
tion, daylength, transmittance of the atmosphere, and the fraction of daily radiation received
at the top of atmosphere during each 30 second interval. Computations are based on the
algorithms described in Whiteman & Allwine (1986) as implemented in MTCLIM (Thornton
& Running, 1999). The data from the solar geometry module is fed to the meteorology
simulation module along with the input forcings. MetSim implements the estimation meth-
ods discussed in Bohn et al. (2013) and Thornton & Running (1999) to estimate the daily
mean temperature, shortwave radiation, vapor pressure, and potential evapotranspiration. If
disaggregation to shorter time steps is configured, the data is passed from the meteorology
simulation module to the disaggregation module. Bohn et al. (2013) provides a further
description and evaluation of these algorithms. Here we briefly mention the disaggregation
procedures for completeness, but no substantial changes were made to the earlier algorithms.
Shortwave is disaggregated by multiplying the total daily shortwave by the fraction of radiation
received in a given timestep (provided by the solar geometry module). This calculation is
corrected for cloud cover by assuming constant transmissivity throughout the day (which
is calculated in the meteorological simulation module). Temperature is disaggregated by
estimating the time at which the daily maximum and daily minimum temperatures occur.
These are chosen so that the daily minimum temperature occurs at sunrise and the daily

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

3

https://doi.org/10.21105/joss.02042


maximum temperature occurs at a fixed time during the day (which is configurable by the user
as a parameter in the configuration file if desired). Then a Hermite polynomial interpolation
is used to obtain the full temperature timeseries at sub-daily time steps. Vapor pressure is
disaggregated by linearly interpolating between the saturation vapor pressure values calculated
based on the daily minimum temperature and that are assumed to occur at the time of the daily
minimum temperature. An additional correction is made to ensure that the vapor pressure at
any given time step does not exceed the saturation vapor pressure, which is calculated directly
from the disaggregated temperature timeseries. Air pressure is disaggregated by using the
disaggregated temperature as well as the elevation data provided by the domain file. Both
specific and relative humidity are then disaggregated using the disaggregated temperature
and air pressure time series. If provided, wind speed is disaggregated, but is assumed to be
constant throughout the day.
As part of the model configuration, the user can select from a number of different algorithms
to estimate longwave radiation. Sub-daily values are calculated with the selected method
using the disaggregated values for vapor pressure and temperature.
Precipitation can be disaggregated in one of two ways. The first and simplest way is to evenly
spread the daily precipitation across the sub-daily time steps. The second method requires two
additional parameters to be specified in the domain file to represent the average precipitation
duration and the time of peak precipitation for each cell. The method then disaggregates
precipitation by constructing a triangular kernel with total area equal to the daily precipitation
centered at the time which is specified as the time of peak precipitation.
MetSim implements several options for parallelism, which are primarily managed by the Dask
(Rocklin, 2015) and xarray (Hoyer & Hamman, 2017) libraries. We explore MetSim’s compu-
tational performance by conducting two scaling experiments. Strong scaling experiments test
how the total runtime is affected by adding processors for a fixed overall problem size. Weak
scaling experiments test how the total runtime is affected by adding processors proportional
to the overall problem size. In ideal cases the runtime halves when doubling the number of
processors for strong scaling experiments and remains constant for weak scaling experiments.
These ideal cases are represented by the “perfect” cases shown in Figure 3. All of the times
reported for the scaling experiments were for a single year run at an hourly time step with
default parameter and output settings. For the strong scaling experiment we ran MetSim for
one year at an hourly timestep over a domain of 6333 cells and ran using 2, 4, 8, 16, 32, 64,
and 128 processors. The time to complete each run is shown in Figure 3 (left). The results
show that scaling is nearly linear with the number of processors.
In the weak scaling experiment we ran MetSim using 2, 4, 8, 16, 32, 64, and 128 processors
while varying the number of cells in the run to maintain a constant workload per processor.
We ran 125 cells per 2 processors, resulting in runs of 125, 250, 500, 1000, 2000, 4000, and
8000 cells, respectively. The results of the weak scaling experiment are shown in Figure 3
(right). Similarly to the strong scaling experiment, we see increasing penalties for adding
additional processors.

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

4

https://doi.org/10.21105/joss.02042


Figure 3: MetSim scaling performance

Applications & Related work

MetSim has been used in several research applications predominantly for generating input to
hydrologic models, though other applications are possible. Bohn, Whitney, Mascaro, & Vivoni
(2019) extended the precipitation disaggregation component to include a new option which
was shown to result in better streamflow predictions than the default method. Cheng, Voisin,
Yearsley, & Nijssen (2020) used MetSim as a component of their modeling framework to
explore how reservoirs affect stream temperatures, and how reservoir operations may be able
to help mitigate the effects of climate change on warming stream temperatures. The Climate
Toolbox (Hegewisch, Abatzoglou, Chegwidden, & Nijssen, 2020) uses MetSim to generate
meteorological data as an intermediate step for developing hydrologic predictions. MetSim
has many other possible uses and is developer-friendly enough for it to be extended to provide
additional functionality.

References

Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B., & Lettenmaier, D. P.
(2013). Global evaluation of MTCLIM and related algorithms for forcing of ecological
and hydrological models. Agricultural and Forest Meteorology, 176, 38–49. doi:10.1016/
j.agrformet.2013.03.003

Bohn, T. J., Whitney, K. M., Mascaro, G., & Vivoni, E. R. (2019). A deterministic approach
for approximating the diurnal cycle of precipitation for use in large-scale hydrological mod-
eling. Journal of Hydrometeorology, 20(2), 297–317. doi:10.1175/JHM-D-18-0203.1

Cheng, Y., Voisin, N., Yearsley, J., & Nijssen, B. (2020). Reservoirs modify river thermal
regime sensitivity to climate change: A case study in the southeastern United States. (In
review). Water Resources Research.

Hegewisch, K., Abatzoglou, J., Chegwidden, O., & Nijssen, B. (2020). Climate toolbox.
Retrieved 2020, from https://climatetoolbox.org/

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

5

https://doi.org/10.1016/j.agrformet.2013.03.003
https://doi.org/10.1016/j.agrformet.2013.03.003
https://doi.org/10.1175/JHM-D-18-0203.1
https://climatetoolbox.org/
https://doi.org/10.21105/joss.02042


Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1). doi:10.5334/jors.148

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler. In
Proceedings of the second workshop on the LLVM compiler infrastructure in HPC, LLVM
’15. New York, NY, USA: Association for Computing Machinery. doi:10.1145/2833157.
2833162

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically
based model of land surface water and energy fluxes for general circulation models. Journal
of Geophysical Research: Atmospheres, 99(D7), 14415–14428. doi:10.1029/94JD00483

McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt
& J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56).
doi:10.25080/Majora-92bf1922-00a

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling.
In K. Huff & J. Bergstra (Eds.), Proceedings of the 14th Python in Science Conference
(pp. 130–136). doi:10.25080/Majora-7b98e3ed-013

Thornton, P. E., & Running, S. W. (1999). An improved algorithm for estimating incident
daily solar radiation from measurements of temperature, humidity, and precipitation. Agri-
cultural and Forest Meteorology, 93(4), 211–228. doi:10.1016/S0168-1923(98)00126-9

Whiteman, C., & Allwine, K. (1986). Extraterrestrial solar radiation on inclined surfaces.
Environmental Software, 1(3), 164–169. doi:10.1016/0266-9838(86)90020-1

Bennett et al., (2020). MetSim: A Python package for estimation and disaggregation of meteorological data. Journal of Open Source Software,
5(47), 2042. https://doi.org/10.21105/joss.02042

6

https://doi.org/10.5334/jors.148
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1029/94JD00483
https://doi.org/%20%2010.25080/Majora-92bf1922-00a%20
https://doi.org/%2010.25080/Majora-7b98e3ed-013%20
https://doi.org/10.1016/S0168-1923(98)00126-9
https://doi.org/10.1016/0266-9838(86)90020-1
https://doi.org/10.21105/joss.02042

	Summary
	Architecture and performance
	Applications & Related work
	References

