
Multiblock PLS: Block dependent prediction modeling
for Python
Andreas Baum1 and Laurent Vermue1

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads 324, DK-2800 Kgs. Lyngby, Denmark

DOI: 10.21105/joss.01190

Software
• Review
• Repository
• Archive

Submitted: 06 January 2019
Published: 10 February 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Introduction

Partial Least Squares (PLS) regression is a statistical method for supervised multivariate
analysis. It relates two data blocks X and Y to each other with the aim of establishing
a prediction model. When deployed in production, this model can be used to predict an
outcome y from a newly measured feature vector x. PLS is popular in chemometrics,
process control and other analytic fields, due to its striking advantages, namely the abil-
ity to analyze small sample sizes and the ability to handle high-dimensional data with
cross-correlated features (where Ordinary Least Squares regression typically fails). In
addition, and in contrast to many other machine learning approaches, PLS models can
be interpreted using its latent variable structure just like principal components can be
interpreted for a PCA analysis.

Multivariate data is often structured in blocks, e.g. X1, X2, … , Xi. This could mean
that one has obtained data from two different analytic methodologies for a similar set of
samples, which may indicate two totally independent feature spaces. In such cases it is
often important to understand how each data block contributes to the prediction of Y.
Examples for data measured in blocks could be the following.

1. It can be of interest to relate patient clinical records to data obtained through differ-
ent high-throughput omics measurements. These data could typically be structured
in blocks referring to genomics, transciptomics, proteomics, metabolomics etc.

2. Spectroscopic methods are useful to predict and assure food quality parameters.
When measuring food samples by several different spectroscopic methods, e.g. by
applying near infrared and UV-vis spectroscopy, it is meaningful to combine the
data blocks to obtain reliable prediction models.

3. A process utilizing fermentation technology is typically carried out in several se-
quential production phases, i.e. seed and main fermentation phase. If sensor data
is available for all production phases it is meaningful to include these as individ-
ual data blocks when establishing prediction models for quality control parameters,
such as product yield.

Several Data Fusion approaches were proposed to establish combined prediction models
from such multiblock data (Li, Wu, & Ngom, 2016). One of the proposed methods
is Multiblock-PLS (MB-PLS) (Westerhuis, Kourti, & MacGregor, 1998). It is closely
related to PLS regression, but instead of obtaining an interpretative model for the entire
(concatenated) data matrix X one obtains model parameters for each individual data
block Xi. Furthermore, it provides a relative importance measure, i.e. expressing how

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source Software, 4(34), 1190.
https://doi.org/10.21105/joss.01190

1

https://doi.org/10.21105/joss.01190
https://github.com/openjournals/joss-reviews/issues/1190
https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS
https://doi.org/10.5281/zenodo.2560303
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01190


much each block Xi contributes to the prediction of Y. Subsequently, this information
can be used to recognize block specific patterns in the data.

At the current stage software packages for MB-PLS exist for Matlab (http://www.models.
life.ku.dk/MBToolbox) and R (Bougeard & Dray, 2018). In the following sections we
give a brief introduction to the statistical method and its implementation. The pack-
age is distributed under the BSD-3-Clause license and made available at https://github.
com/DTUComputeStatisticsAndDataAnalysis/MBPLS together with several introduc-
tory Jupyter notebook examples. It is also available as pip installable Python pack-
age (https://pypi.org/project/mbpls/) and comes with a Read-the-Docs documentation
(https://mbpls.readthedocs.io).

Methods

The MB-PLS package can be utilized for PLS and MB-PLS regression. The statistical
background is briefly introduced in the following. More detailed information is given in the
mbpls help of the Python package (https://mbpls.readthedocs.io/en/latest/mbpls.html).

PLS

PLS was introduced by S. Wold, Ruhe, Wold, & III (1984) and aims at finding a suitable
subspace projection w which maximizes co-variance between a so called score vector t
and a response vector y that will yield a least squares solution. The formal PLS criterion
for univariate responses y is given in eq. 1.

argmax
w

cov(t,y)

∣∣∣∣∣∣min

 I∑
i=1

J∑
j=1

(xij − tiwj)
2

 ∧ ∥w∥ = 1

 (1)

This procedure is typically repeated to find K latent variables (LV). In each latent variable
step, the score vector tk is subsequently projected onto its respective matrix Xk to find
the loading vector pk (eq. 2). Once found, Xk is deflated by the explained variance (eq.
3) and the next latent variable k + 1 can be calculated using Xk+1.

pk = Xktk (2)

Xk+1 = Xk − tkpkT (3)

Algorithms to perform PLS regression include the Nonlinear Iterative PArtial Least
Squares (NIPALS) (S. Wold et al., 1984), UNIversal PArtial Least Squares (UNIPALS)
(Dunn III, Scott, & Glen, 1989), Kernel UNIPALS (Lindgren, Geladi, & Wold, 1993;
Rännar, Geladi, Lindgren, & Wold, 1995; Rännar, Lindgren, Geladi, & Wold, 1994) and
SIMPLS algorithm (de Jong, 1993). While NIPALS represents an iterative approach,
the other algorithms are based on Singular Value Decomposition (SVD). All the above
mentioned algorithms are implemented in the MB-PLS package. Benchmark results and
comparisons to other Software packages are provided below.

MB-PLS

MB-PLS can be understood as an extension of PLS to incorporate several data blocks
X1, ...,Xi, which all share a common sample dimension. The prediction accuracy does not
deviate from normal PLS, if all data blocks were concatenated into a single block, but the

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source Software, 4(34), 1190.
https://doi.org/10.21105/joss.01190

2

http://www.models.life.ku.dk/MBToolbox
http://www.models.life.ku.dk/MBToolbox
https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS
https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS
https://pypi.org/project/mbpls/
https://mbpls.readthedocs.io
https://mbpls.readthedocs.io/en/latest/mbpls.html
https://doi.org/10.21105/joss.01190


X1,k

p1,k

t1,k
MB-PLS

Y

vk

ukX2,k

p2,k

t2,k

BIP = 43% BIP = 57% 67% expl. var.

k = 1

Figure 1: The figure illustrates the extraction of a single LV (k = 1). MB-PLS offers extra exploratory
features for each block, i.e. block scores, block loadings and block importances (BIP).

advantage of MB-PLS is to gain extra model interpretability concerning the underlying
block structure of the data. For each LV one obtains extra block scores, block loadings
and block importances (BIP). The extraction of a single LV using MB-PLS is illustrated
in figure 1. The results are read in a fashion that 67% variance in Y are explained by the
first LV. The two blocks X1 and X2 contribute to the prediction of the 67% with their
relative BIPs, 43% and 57%, respectively. More important blocks result in more influential
block loadings and contribute stronger to the prediction of Y. Hence, interpretation of
patterns among block scores with high importance are recommended.

To assert that the BIP is a meaningful indicator it is necessary to standardize the data
prior to MB-PLS analysis. When standardization is employed all features in all blocks
have a variance of 1. For post-hoc interpretation of the loadings an inverse transformation
is carried out to ensure straight forward interpretation of the results.

Software and Implementation

The package is written in pure Python 3. In its core it builds on Numpy and Scipy for
efficient data handling and fast mathematical operations of big data-sets. To achieve
a fast implementation all algorithms using SVD employ Scipy’s partial SVD capability,
i.e. by only calculating the first singular value at each PLS iteration. Multiple matrix
multiplications use the optimized Numpy multi-array multiplication. In addition, the
MB-PLS implementation can handle missing data without prior imputation based on the
sparse NIPALS algorithm by H. Martens & Martens (2001). The overall code design
follows the structure and philosophy of Scikit-learn (Pedregosa et al., 2011). Therefore,
objects are instantiated in a Scikit-learn manner and can be accessed with the same
methods, i.e. fit, predict, transform and score. Furthermore, Scikit-learn’s base classes
and validation methods are incorporated. As a result, all objects are fully compatible
to Scikit-learn and, thus, allow the use of model selection functions, e.g. cross validation
and grid search, as well as a processing pipeline. For exploratory analysis, each fitted
model contains a custom plot method that the fitted model attributes in a meaningful
manner using Matplotlib, which allows a straight forward evaluation of the MBPLS results
without requiring any additional coding.

Benchmark

To compare the four algorithms, the run-times are analyzed for different data-set sizes with
two basic shapes, i.e. non-symmetric shapes with more samples than variables (N > P )
or vice versa (N < P ) and symmetric shapes (N = P ). To simulate the multiblock and
multivariate behaviour, each data-set is split into two X-blocks with the size N × P

2 and

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source Software, 4(34), 1190.
https://doi.org/10.21105/joss.01190

3

https://doi.org/10.21105/joss.01190


Figure 2: Comparison of run-times based on different data-set sizes

accompanied by a Y-block of size N × 10. The data is randomly generated for each run,
so that the obtained times exhibit worst-case behaviour, since there are no actual latent
structures. All algorithms are set to find the first 20 LVs and are run three times for each
data-set size on a machine with two Intel ® Xeon ® X5650 @ 2.67 GHz processors and
48 GB RAM.

As to be seen in both both plots of figure 2 all algorithms implemented in the Python
mbpls package substantially outperform the above mentioned R-package Ade4-MBPLS by
Bougeard & Dray (2018), which was run on the same machine. In general NIPALS is the
fastest multiblock algorithm that is only outperformed by the SIMPLS algorithm, which
only supports single block PLS. However, figure 2a shows how the KERNEL algorithm
performs progressively better in cases where N >> P or N << P . As to be seen in
this plot, the runtime of this algorithm is a combination of an exponential part given
by the right plot and dependent on min(N,P ) and a linear part defined by diff(N,P ).
Due to the exponential part, min(N,P ) has to be considered carefully when choosing the
KERNEL algorithm over NIPALS.

An important feature of this Python mbpls package is its invariance to shape rotations,
i.e. it obtains the same run-times for both N > P and N < P given the same ratio N

P
and its respective inverse, which e.g. is not the case for the R-package.

Acknowledgement

The authors gratefully acknowledge the financial support through the BioPro (Innova-
tionsfonden project nr. 10513) and DABAI (Innovationsfonden project nr. 10599 and
10577) project.

References

Bougeard, S., & Dray, S. (2018). Supervised multiblock analysis in r with the ade4
package. Journal of Statistical Software, 86(1), 1–17. doi:10.18637/jss.v086.i01

de Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regres-
sion. Chemometrics and intelligent laboratory systems, 18(3), 251–263. doi:10.1016/
0169-7439(93)85002-X

Dunn III, W. J., Scott, D. R., & Glen, W. G. (1989). Principal components analysis
and partial least squares regression. Tetrahedron computer methodology, 2(6), 349–376.
doi:10.1016/0898-5529(89)90004-3

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source Software, 4(34), 1190.
https://doi.org/10.21105/joss.01190

4

https://doi.org/10.18637/jss.v086.i01
https://doi.org/10.1016/0169-7439(93)85002-X
https://doi.org/10.1016/0169-7439(93)85002-X
https://doi.org/10.1016/0898-5529(89)90004-3
https://doi.org/10.21105/joss.01190


Li, Y., Wu, F.-X., & Ngom, A. (2016). A review on machine learning principles for multi-
view biological data integration. Briefings in Bioinformatics, 19(2), 325–340. doi:10.
1093/bib/bbw113

Lindgren, F., Geladi, P., & Wold, S. (1993). The kernel algorithm for pls. Journal of
Chemometrics, 7(1), 45–59. doi:10.1002/cem.1180070104

Martens, H., & Martens, M. (2001). Multivariate analysis of quality: An introduction.
Chichester: Wiley.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12(Oct), 2825–2830.

Rännar, S., Geladi, P., Lindgren, F., & Wold, S. (1995). A pls kernel algorithm for data
sets with many variables and few objects. Part ii: Cross-validation, missing data and
examples. Journal of Chemometrics, 9(6), 459–470. doi:10.1002/cem.1180090604

Rännar, S., Lindgren, F., Geladi, P., & Wold, S. (1994). A pls kernel algorithm for data
sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of
Chemometrics, 8(2), 111–125. doi:10.1002/cem.1180080204

Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1998). Analysis of multiblock and
hierarchical pca and pls models. Journal of Chemometrics, 12(5), 301–321. doi:10.1002/
(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S

Wold, S., Ruhe, A., Wold, H., & III, W. J. D. (1984). The collinearity problem in linear
regression. The partial least squares (pls) approach to generalized inverses. SIAM Journal
on Scientific and Statistical Computing, 5(3), 735–743. doi:10.1137/0905052

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source Software, 4(34), 1190.
https://doi.org/10.21105/joss.01190

5

https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1002/cem.1180070104
https://doi.org/10.1002/cem.1180090604
https://doi.org/10.1002/cem.1180080204
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1137/0905052
https://doi.org/10.21105/joss.01190

	Introduction
	Methods
	PLS
	MB-PLS

	Software and Implementation
	Benchmark
	Acknowledgement
	References

